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Abstract—Every day, numerous VMs are migrated inside a datacenter to balance the load, save energy or prepare production servers
for maintenance. Although VM placement problems are carefully studied, the underlying migration schedulers rely on vague adhoc
models. This leads to unnecessarily long and energy-intensive migrations.
We present mVM, a new and extensible migration scheduler. To provide schedules with minimal completion times, mVM parallelizes
and sequentializes the migrations with regards to the memory workload and the network topology. mVM is implemented as a plugin of
BtrPlace and its current library allows administrators to address temporal and energy concerns. Experiments on a real testbed shows
mVM outperforms state-of-the-art migration schedulers. Compared to schedulers that cap the migration parallelism, mVM reduces the
individual migration duration by 20.4% on average and the schedule completion time by 28.1%. In a maintenance operation involving
96 VMs migrated between 72 servers, mVM saves 21.5% Joules against BtrPlace. Compared to the migration model inside the cloud
simulator CloudSim, the prediction error of the migrations duration is about 5 times lower with mVM. By computing schedules involving
thousands of migrations performed over various fat-tree network topologies, we observed that the mVM solving time accounts for about
1% of the schedule execution time.
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1 INTRODUCTION

I NFRASTRUCTURE As A Service (IaaS) clouds provide clients
with resources via Virtual Machines (VMs). To deploy applica-

tions (web services, data analytics etc.) in an IaaS cloud, a client
installs the appropriate application and selects a Service Level
Agreement (SLA) offered by the provider. Currently, public cloud
providers advertise 99.95% availability [1], [2]. To ensure this,
any management operation on the provider side must be done
on the fly, with a minimal interference over the VM availability.
Live migration [3] makes these management operations possible: it
relocates a running VM from one server to another with negligible
downtime under idyllic conditions.

Today, live-migrations occur continuously. For example, dy-
namic VM placement algorithms relocate the VMs depending on
their resource usage to distribute the load between the servers or to
reduce the datacenter power consumption [4], [5], [6], [7]. These
solutions work in two passes. The first pass consists in computing
the new placement for some VMs according to specific objectives.
The second pass consists in enacting the new VM placement
using live-migrations. Datacenter operators heavily rely on live-
migration to perform maintenance operations over production
infrastructures [8]. For example, the VMs running on a server to
update must be first relocated elsewhere to keep VMs availability.
A maintenance operation occurs at the server scale but also at rack
or cluster scale. At a small scale, the operator may want to find
a destination server and relocate the VMs by himself. At a larger
scale, the operator is assisted by a placement algorithm.

A live-migration is a costly operation. It consumes network
bandwidth and energy. It also temporarily reduces the VM avail-
ability. When numerous VMs must be migrated, it is important to
schedule the migrations wisely, in order to minimize the impact
on both the infrastructure and the delivered quality of service [9].
In practice, the duration of a migration depends on the allocated
bandwidth and its memory workload. A sequential execution leads
to fast individual migrations but long standing completion time
(i.e. time to complete all the migrations). On the opposite, an
excessive parallelism leads to a low per-migration bandwidth

allocation hence long or even endless migrations. Additionally,
the datacenter operator and the customers have restrictions in
terms of scheduling capabilities. For example, it may be re-
quired to synchronize the migration of strongly communicating
VMs [10], while a datacenter must also cap its power usage to
fit the availability of renewable energies or ensure power cooling
capabilities [11]. This advocates for a scheduling algorithm that
can take the benefits from the knowledge of the network topology,
the VM workload but also the clients and the datacenter operator
expectations to compute fast and efficient schedules.

Despite VM placement problems are carefully studied, we
observe that the scheduling algorithms enacting the new place-
ments do not receive the same level of attention. Indeed, un-
derlying scheduling models that estimate the migration duration
are often inaccurate. For example, Entropy [4] supposes a non-
blocking homogeneous network coupled with a null dirty pages
rate. These hypotheses are unrealistic, prevent from computing
efficient schedules and finally reduce the practical benefits of the
placement algorithms [7].

In this paper, we present mVM, a migration scheduler that
relies on realistic migration and network models to compute the
best moment to start each migration and the amount of bandwidth
to allocate. It also decides which migrations are executed in
parallel to provide fast migrations and short completion times.
In practice, mVM is implemented as a set of extensions for the
customizable VM manager BtrPlace [12].

The evaluation of mVM is performed over a blocking network
testbed against two representative schedulers: An unmodified
BtrPlace that maximizes the migration parallelism similarly to [4],
[6], [13], and a scheduler that reproduces Memory Buddies [14]
decisions by statically capping the parallelism. The migration
model accuracy is finally evaluated against representative cloud
simulators models such as CloudSim [13] that tend to simplify the
actual migration behavior, and SimGrid [15] which provides more
realistic results. Our main results are:

Prediction accuracy: On 50 migration plans generated ran-
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domly, mVM estimated the migration durations with a precision
of 93.9%. This is a 26.2% improvement over those computed by
the model inside CloudSim [6], [13], BtrPlace [12] or Entropy [4]
and an 1.7% improvement over SimGrid [16].

Migration speed: On the same random migration plans, the
migrations scheduled by mVM completed on average 20.4% faster
than Memory Buddies, while completion times were reduced by
28.1%. Contrarily to Memory Buddies, mVM always outperforms
sequential scheduling with an average migration slowdown of
7.35% only, 4.5 times lower than with Memory Buddies.

Energy efficiency: In a server decommissioning operation
involving 96 migrations among 72 servers, the schedule computed
by mVM saves 21.5% Joules with regards to BtrPlace.

Scalability: The computation time of mVM to schedule
thousands of migrations over various fat-tree network topologies
accounts for less than 1% of the completion time.

Extensibility: mVM controls the scheduling at the action level
through independent high-level constraints. The current library
implements 4 constraints and 2 objectives. They address temporal
and energy concerns such as the capability to compute a schedule
fitting a power budget.

The paper is organized as follows. Section 2 describes the
design of mVM. Section 3 details its implementation and Section 4
presents performance optimizations. Section 5 evaluates mVM.
Finally, Section 6 describes related work, and Section 7 presents
our conclusions and future works.

2 MVM OVERVIEW

mVM is a migration scheduler that can be configured with specific
constraints and objectives. It aims at computing the best sequence
of migrations along with any actions needed to perform a data cen-
ter reconfiguration while continuously satisfying the constraints.
It is implemented as a set of extensions for BtrPlace and controls
VMs running on top of the KVM virtual machine monitor [17]. In
this paper, we refer to a customized version of BtrPlace with our
extensions as mVM.

In this section, we first introduce the architecture of mVM
and illustrate how it concretely performs migration scheduling.
We finally describe the integration of our mVM scheduler into
BtrPlace.

2.1 Global design
Figure 1 depicts the architecture of mVM. mVM takes as input
three types of informations, the data center configuration, the
VM characteristics and the scheduling constraints. The datacenter
configuration specifies the network including its topology along
with the capacity and the connectivity of the switches. This
information is usually obtained automatically by a monitoring
tool. Despite mVM should be able to comply with any tool,
these informations must be provided using the SimGrid Platform
Description Format.1

The VM characteristics provide the current VM placement
and resource usage but also their real memory usage and their
dirty pages rate. All these informations can also be retrieved
by a monitoring tool. The memory usage and dirty pages rate
are however rarely monitored. We then develop a new Qemu
command to retrieve these informations from the KVM hypervisor
using libvirt.

1. http://simgrid.gforge.inria.fr/simgrid/3.9/doc/platform.html

Fig. 1. mVM architecture.

The constraints indicate the expectations that must be satisfied
by the computed schedule. They must at least state the future
hosting server for each VM. These constraints can be specified
manually or computed with a VM placement algorithm; With
the legacy version of BtrPlace for example. The constraints also
express additional restrictions such as the need to synchronize
some migrations or to cap the datacenter power usage during
a reconfiguration. They can be provided through configuration
scripts or directly through an API.

With these inputs, mVM computes a reconfiguration plan that
is a schedule of actions to execute. For each migration action,
mVM indicates the moment to start the action, its predicted
duration and the amount of bandwidth to allocate.

The Executor module applies the schedule by performing all of
the referred actions. In practice, it is not safe to execute actions by
only focusing on the predicted start times as the effective duration
of an action may differ from its estimated duration. This can lead
to unexpected SLA violations, an extra energy consumption, or
a technical limitation such as the migration of a VM to a server
that is not yet online. To address this issue, the executor inserts
dependencies between actions according to a global virtual clock.

2.2 mVM integration

Figure 2 illustrates the interaction between BtrPlace and mVM.
mVM only focuses on migration scheduling. Thus, It needs to
know the destination server of each migration. We then integrated
the mVM scheduling model by using a two rounds resolution.
First, the original BtrPlace is used to compute a viable placement
for each VM. Then, mVM retrieves the destination chosen for
each migration and rely both on the network model to compute
the bandwidth to allocate for each migration and on the migration
model to estimate the corresponding migration duration.
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Fig. 2. Integration of mVM within BtrPlace using a two-round resolution.

3 IMPLEMENTATION

In this section, we describe the implementation of mVM. We first
introduce the BtrPlace architecture. We then provide details of
the implementation of the network and the migration models. We
finally present extensions we developed on top of the migration
model to control the scheduling with regards to temporal or
energy-efficiency concerns.
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3.1 BtrPlace architecture
BtrPlace [12] aims at computing the next placement for the VMs,
the next state for the servers, and the action schedule that lead to
this stage.

BtrPlace uses constraint programming (CP) to model a place-
ment for the VMs and the action schedule, it relies on the Java
library Choco [18] to solve the associated problem. CP is an
approach to model and solve combinatorial problems in which
a problem is modeled by logical relations that must be satisfied
by the solution. The CP solving algorithm does not depend on the
constraints composing the problem and the order in which they
are provided. To use CP, a problem is modeled as a Constraint
Satisfaction Problem (CSP), comprising a set of variables, a set
of domains representing the possible values for each variable, and
a set of constraints that represent the required relations between
the values and the variables. A solver computes a solution for a
CSP by assigning to each variable a value that simultaneously
satisfies the constraints. The CSP can be augmented with an
objective represented by a variable that must have its associated
value maximized or minimized. To minimize (resp. maximize) a
variable K, Choco works incrementally: each time a solution with
an associated cost k is computed, Choco automatically adds the
constraint K < k (resp. K > k) and tries to compute a new solution.
This added constraint ensures the next solution will have a better
objective value. This process is repeated until Choco browses the
whole search space or hits a given timeout. It then returns the last
computed solution.

From its inputs, Btrplace first models a core Reconfiguration
Problem (RP), i.e. a minimal placement and scheduling algorithm
that manipulate servers and VMs through actions. Each action is
modeled depending on its nature (booting, migrating or halting
a VM, booting or halting a server). An action a ∈ A embeds at
least a variable st(a) and ed(a) that denote the moments the action
starts and terminates, respectively.

As CP provides composition, it is possible to plug external
models on top of the core RP to support additional datacenter
elements, such as the network, but also additional concerns such
as the power usage that results from the execution of each action.
It is also possible to use an alternative model for each kind of
action. Once the core RP is generated, BtrPlace customizes it with
all the stated constraints and the possible objective. The resulting
specialized RP is then solved to generate the action schedule to
apply.

Inside the core RP, mVM inserts a network model, a new
migration model and a power model to formulate the power
consumption of a migration. On top of the core RP, mVM
also provides additional constraints and objectives to adapt the
schedule with regards to temporal and energy concerns. In total,
these extensions represent 1600 lines of Java code.

3.2 Network model
A migration transfers a VM from a server to another through a
network. For economic and technical reasons, a network is rarely
non-blocking. Indeed, network links and switches might not be
provisioned enough to support all the traffic in the worst case
scenario.

Our network model represents the traffic generated by each
migration over the time and the available bandwidth, through a
set of network elements. All the links are considered full-duplex.
As the next VM placement is known, the model considers that a

VM migrates from its source to its destination server through a
predefined route. The bandwidth allocation for a migration is also
supposed to be constant. Finally, the model ignores the network
latency, which means that it considers a migration occupies simul-
taneously all the networking elements it is going through. This
assumption is coherent as temporal variables in our model are
expressed in terms of seconds while the network latency between
two servers in a datacenter is much less than a second.

The network model considers a set of VM migrations M ⊆A
to perform over a set of network elements N (network inter-
faces, switches, etc.). For any element n ∈N , capa(n, t) denotes
its capacity in Mbit/s at time t. For any migration m ∈ M ,
path(m) ⊆ N indicates the network elements crossed (source
and destination servers included), bw(m, t) denotes the allocated
bandwidth in Mbit/s at time t, st(m) and ed(m) indicate the
beginning and the end of the operation in seconds, respectively.
The equation (1) models the bandwidth sharing of a network
element among the migrations that pass through it:

∑
m∈M , n∈path(m),

t∈[st(m); ed(m)]

bw(m, t) ≤ capa(n, t) (1)

The bandwidth sharing is modeled with cumulative con-
straints [19]. Each consists in placing a set of tasks on a bounded
resource. A task aggregates three variables: a height, a duration,
and a starting time. The constraint ensures then that at any time,
the cumulative height of the placed tasks does not exceed the
height of the resource. We defined two different elements that
compose the network model. The first one is the network link.
To represent both half- and full-duplex links, we use one or
two cumulative constraints to represents its capacity depending
on its duplex communication system. Indeed, when using half-
duplex link, the communication is one direction at a time and
it thus only requires one cumulative constraint. The full-duplex
link, because of its two-way communication channel, requires two
separate cumulative constraints to represent each direction that
can be used simultaneously by different migrations. The second
network element is the switch, which is used to connect the links
together. In the case of a blocking-switch only, a single cumulative
constraint is necessary to represent its limited capacity.

3.3 Migration model
In this section, we first give some background related to the live-
migration protocol. Then we analyse the memory consumption
induced by a migration on server side. Finally, we discuss the
VM memory activity impact on the migration and describe our
migration model accordingly.

3.3.1 Live-migration algorithm
The migration model mimics the pre-copy algorithm [3] used in
Xen and KVM and assumes a shared storage for the VM disk
images. The pre-copy algorithm is an iterative process. The first
phase consists in sending all the memory used by the VM to the
destination server while the VM is still running. The subsequent
phases consist in sending iteratively the memory pages that were
made dirty during the previous transfer. Thus, the migration
duration depends of the memory dirtying rate and the bandwidth
allocated to the migration. The migration terminates when the
amount of dirty pages is sufficiently low to be sent in a time
interval lesser than the downtime (30 ms by default). Once this
condition is met, the VM is suspended on the hosting server, the
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latest memory pages and its state are transferred, and the VM is
resumed on the destination server. It is worth noting that with this
algorithm, the duration of a live-migration increases exponentially
when the allocated bandwidth decreases linearly (see Figure 3).
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Fig. 3. Duration of a live-migration between 2 KVM hypervisors de-
pending on the allocated bandwidth and the parameters used by the
command stress to generate dirty pages. 1000*10K indicates the VM
runs 1000 concurrent threads that continuously allocate and release
10 KiB of memory each. The VM memory used is set to 4 GiB and
the downtime is limited to 30 ms.

Using the pre-copy algorithm, the migration duration highly
depends on the memory activity of the VMs to migrate. Addition-
ally, as the memory used by a VM is mapped to the physical host
memory, the behavior of servers memory usage during a migration
may impact its duration.

3.3.2 Server memory usage
To analyze the memory consumed by the migration and the mem-
ory transfer behavior between the servers, we migrated 4 VMs
simultaneously from one server to another and monitored their
memory usage. To actually observe the memory consumed by each
migration separately, we started them by 5 seconds interval. The
testbed consists of two identical servers with 16 GiB of memory
and 2 quad-cores CPUs each. Every VM to migrate has a single
vCPU and consumes 2 GiB of memory. To avoid extra migration
duration, each VM has low CPU and memory activity (idle VMs).
Figure 4 depicts the memory usage on the servers.

Figure 4a shows the memory consumption on the source and
the destination servers during the experiment. The migrations are
represented by the vertical dotted lines where S1 to S4 represent
the start times and E1 to E4 the termination of the four migrations.
As we can see, the source server releases the whole memory
used by a VM at once just after the migration completed. This is
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Fig. 4. Overview of the memory consumption on both source and desti-
nation servers during 4 parallel migrations. Figure (b) is a closest view
of the source server consumption when the migrations begin.

explained by the behavior of the pre-copy algorithm implemented
on KVM. On the other side, the destination server receives the VM
memory pages at the network speed of 1 Gbps and immediately
fills them in memory. Its own memory consumption thus increases
linearly during the migration. Consequently, this behavior does not
require any post-migration delay due to guest memory mapping
and is therefore not considered in the mVM migration model.

The memory usage due to the migration itself is too low to
be observed on Figure 4a, we thus represented it more closely in
Figure 4b. We observe that the memory consumption overhead
induced by each migration is about 6 MiB which is negligible
with regards to the memory available in current servers. Although
this overhead may saturate the server, a common practice consists
in reserving a sufficient amount of memory on the host to avoid
such a saturation. Therefore, the additional memory used by the
migration management is low enough to be safely ignored in the
migration model.

3.3.3 VM memory activity
According to the majority of the loads observed on real appli-
cations [20], [21], the evolution of the memory dirtying rate can
be separated in two phases. The first phase corresponds to the
writing of the hot-pages, a set of memory pages that are quickly
dirtied. This phase exhibits a high dirty pages rate but for a short
period of time. The second phase represents the linear writing
of the cold-pages which corresponds to the pages that became
dirty after the generation of the hot-pages until the end of the
migration. These two phases are distinguished by the observation
of the memory dirtying rate variation. The amount of hot-pages
HPs in MiB, and the seconds HPd spent to rewrite them give a
good overview of the minimum bandwidth to allocate to ensure the
termination of a migration. In practice, predicting the termination
of a migration consists in measuring HPs over a period equal to
the downtime period D and ensuring that HPs

D is less than the
available bandwidth on the migration path. The dirtying rate of
the cold-pages CPr in MiB/s can be measured after t = HPd .
Often very low, this rate is still dependent of the VM’s workload.
As the hot-pages, the cold-pages are rewritten at the beginning
of the migration process. Thereby, the hot-pages dirtying rate
is written: HPr =

HPs
HPd
−CPr. Given a migration m ∈M , with

mu(m) the amount of memory used by the VM in MiB and
bw(m) its allocated bandwidth, the minimum duration of the
migration dmin is written: dmin(m) = mu(m)

bw(m) . Hence if we assume
that the total amount of cold-pages rewritten during the migration
process CPs is always lower than mu(m), then CPs can be written:
CPs = dmin(m)×CPr. In general, to transfer an amount of memory
X with a bandwidth Y and a memory dirty rate Z, the transfer
duration can be modeled by: X

Y−Z . Thus the time spent to send the
cold-pages dCP is written:

dCP(m) =
CPs

bw(m)−CPr
(2)

Then the time spent to send the hot-pages dHP equals:

dHP(m) =
HPs

bw(m)
+

HPs−
(
D×bw(m)

)
bw(m)−HPr

(3)

Where HPs
bw(m) corresponds to the first transmission of the hot-pages

and D×bw(m) to the amount of data to send after suspending the
VM on the source node (cf. during the downtime). If this value is
higher than the measured amount of hot-pages (D×bw(m)>HPs),
then it will not be necessary to iteratively send the hot-pages to
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comply with the desired downtime. In this case, the computation
is thus simplified:

dCP(m)+dHP(m) =
CPs−

((
D×bw(m)

)
−HPs

)
bw(m)−CPr

+
HPs

bw(m)
(4)

Finally, the duration d of a migration m is:

d(m) = dmin(m)+dCP(m)+dHP(m)+D (5)

The duration of dmin is the dominating factor. It is usually
expressed in the order of seconds or minutes, while dCP(m) and
dHP(m) are usually expressed in seconds. Finally the downtime D
has a very low weight (30 ms by default). It can thus be ignored
when the unit of time is a second.

This migration model establishes the link between the dura-
tion of a migration, represented by the length of the task in a
cumulative constraint, and the bandwidth to allocate, represented
by the height of the task. As a result, mVM knows that a min-
imum bandwidth is required to ensure the migration termination
while allocating a high bandwidth reduces the migration duration
exponentially.

3.4 Extensions
In this section we present the extensions we developed to control
the migrations. All these extensions were implemented using the
original BtrPlace API and rely on the variables provided by the
migration model.

3.4.1 Supporting the post-copy migration algorithm
Production oriented hypervisors implement the pre-copy migra-
tion algorithm. The post-copy algorithm is another approach that
despite its efficiency, is not available in any production-oriented
hypervisors [22]. It is worth noting that the extensibility of Btr-
Place allows to support this migration model in place of the model
discussed in Section 3.3.3. The post-copy algorithm consists in
migrating the VM state and resume the VM at the beginning of the
operation. The memory pages are then sent on-demand through the
network. This tends to reduce the migration duration by removing
the need to re-send dirty memory pages. Using mVM variables,
this algorithm would be implemented by simply stating:

d(m) =
mu(m)

bw(m)
(6)

3.4.2 Temporal control
Sync synchronizes the migrations of the VMs passed as param-
eters. It is a constraint inspired by COMMA [10]. When two
strongly-communicating VMs must be migrated to a distant server,
they can be migrated sequentially. Temporarily, one VM will be
then active on the distant server while the second one stay on the
source server. The two VMs will thus suffer from a performance
loss due to communication through a slow link. It is possible to
migrate a VM using either a pre-copy or a post-copy algorithm.
While in the pre-copy algorithm, the VM state is migrated at
the end of the operation, the post-copy algorithm migrates the
VM state at the beginning of the operation. Sync supports both
pre-copy and post-copy approaches by synchronizing either the
beginning or the end of the migrations. In practice, the constraint
enforces the variables denoting the moment the migrations starts
(post-copy algorithm) or end (pre-copy algorithm) to be equal.

Before establishes a precedence rule between two migrations
or a migration and a deadline. It allows a datacenter operator to

specify priorities in a maintenance operation, or to ensure the
termination of a heavy maintenance operation in time, before
the office hours for example. The constraint that establishes a
precedence rule between two migrations m1 and m2 is expressed
as follows:

ed(m1)≤ st(m2)

Seq ensures that the given migrations will be executed se-
quentially but with no precise order. This allows the operator
to reduce the consequences if a hardware failure occurs during
the execution of a schedule as only one migration will be active.
The constraint does not force any ordering to let the scheduler
decides the most profitable one with respect to the other stated
constraints. seq is implemented by a cumulative constraint with a
resource having a capacity of 1 and each migration a height of 1.
An implementation based on a disjunctive [23] constraint would
be preferable to obtain better performance. It is however not yet
implemented inside Choco.

MinMTTR is an objective that ask for fast schedules. The
intuition is to have fast actions that are executed as soon as
possible. It is implemented as follows:

min
(

∑
a∈A

ed(a)
)

3.4.3 Energy aware scheduling
A schedule is composed of some actions to execute. In a server
maintenance operation for example, there will be VMs to migrate
but also servers to turn on or off. These operations should be
planned with care to consume a few amount of energy or a
consumption that fit a given power budget [11]. BtrPlace already
embeds a power model for the actions that consists in turning on
and off a server or a VM. We describe here the power model for a
migration and two constraints to control the energy usage during
a reconfiguration.

The energy model derives from the model proposed by Liu
et al. [20]. The amount of data transmitted and received by these
servers is the same. With network interfaces that are not energy
adaptive, the authors propose and validate a model where the en-
ergy consumed by a migration increases linearly with the amount
of data to be transferred. Equation (7) formulates with variables
of our migration model, the energy consumption of a migration
when the source and the destination servers are identical. α and β

are parameters that must be computed during a training phase.

∀m ∈M ,E(m) = α×bw(m)×d(m)+β (7)

PowerBudget controls the instantaneous power consumed by
the infrastructure during the reconfiguration process. It takes
as parameters a period of time and the power capping. This
constraint is required for example to avoid overheating [11], or
when the datacenter is powered by renewable energies or under
the control of a Smart City authority that restricts its power usage.
Using PowerBudget, mVM can then delay some migrations or
any actions, depending on their power usage. PowerBudget is
implemented using a cumulative constraint. The resource capacity
is the maximum power allowed during the reconfiguration. Each
action is modeled as a task with its height denoting its power
usage. Finally, when the power budget is not a constant for the
whole duration of the reconfiguration process, additional tasks are
inserted to create a power profile aligned with the requirements.
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MinEnergy is an objective that minimizes the overall energy
consumed by the datacenter during the reconfiguration. The cost
variable to minimize is defined as the sum of the energy spend
by each action (a ∈A ), server (s ∈S ) and VM (v ∈ V ) at every
second of the reconfiguration. Indeed, the energy E consumed by
an action corresponds to the sum of the instantaneous power P
consumed at every second of its duration:

∀a ∈A , E(a) = ∑
t∈[st(a),ed(a)]

P(a, t) (8)

The objective is then implemented as follows:

min

(
∑

a∈A
E(a)+ ∑

s∈S
E(s)+ ∑

v∈V
E(v)

)
(9)

The overall implementation is short, each constraint represents
approximately 100 lines of Java code, while each objective re-
quires around 200 lines.

4 OPTIMIZING MVM
Computing the time to start each migration while satisfying
temporal constraints and without exceeding the network elements
capacities refers to the well-known Resource-Constrained Project
Scheduling Problem (RCPSP), where each migration is an activity
and each network element is a resource to share. However in
our problem, each migration duration depends on its allocated
bandwidth. The VM scheduling problem thus refers to a variant of
the RCPSP called the Multi-mode Resource-Constrained Project
Scheduling Problem (MRCPSP) where each activity has a set
of available modes, and each mode corresponds to a couple of
allocated bandwidth and the associated duration. Minimizing the
makespan on both single and multi-mode RCPSP are known to be
NP-hard [24], while MRCPSP is NP-Hard in the strong sense [25].
Therefore, computing a solution is time consuming when the
number of VMs or the number of network elements is large.
mVM uses two strategies to optimize the solving process. Our first
strategy simplifies the problem using a domain specific hypothesis
while the second is a heuristic that guides the CP solver toward
fast migration plans.

The MaxBandwidth optimization precomputes the bandwidth
to allocate to the migrations. As stated in Section 3.2, there
is a limited interest in parallelizing migrations up to the point
of sharing the minimal bandwidth available on the migration
path: this increases the amount of memory pages to re-transfer
and thus the migration duration. Accordingly, this optimization
forces to allocate the maximum bandwidth for each migration.
As a side effect, this simplification precomputes the migration
duration as well. MaxBandwidth reduces then the set of variables
in the problem to the variables denoting the moment to start the
migrations. By precomputing the bandwidth-duration couple for
each migration, we thus reduced the problem complexity to a
single-mode RCPSP.

Our second strategy is a domain-specific heuristic that indi-
cates to the solver the variables it has to instantiate first and the
values to try for these variables. In general, the intuition is to
guide the solver to variable instantiations of interest. The heuristic
initially implemented for [26] appeared to be over specialised
and only effective when addressing decommissioning scenarios.
This prevented mVM to solve scheduling problems when the
migrations where less ordered, subjects to dependencies or when
servers must send and receive VMs. The new heuristic establishes

three ordered groups of start moment variables: the servers boot
actions, the migrations, and the nodes shutdown actions. Then the
heuristic asks the solver to instantiate the start moments group by
group. For the two groups of servers actions, the heuristic asks
to focus on the hardest actions to schedule, i.e. those having
the smallest domain for their start variable. For the group of
migrations actions, the heuristic considers the migrations as a
graph where servers are the vertices and the migrations are the
arcs. It first forces the solver to focus on the migrations where the
destination server is only subject to ongoing migrations. Then, it
selects the migrations where the destination server has the lowest
amount of outgoing migrations. This process is repeated until
all the migrations start moments are ordered. Each time a start
moment is selected by the search heuristic, the solver is forced
to try its smallest possible value to start the actions as soon as
possible.

It is worth noting that the heuristic is only a guide. It does not
change the problem definition and still leads to a viable solution.
Indeed, the solver prevents any instantiation that contradicts a
constraint and the backtracking mechanism to revise a initial
instantiation that turned to be invalid later in the search tree.

5 EVALUATION

mVM aims at improving the live-migration scheduling thanks to
an accurate migration model and appropriate reasoning. In this
section, we first evaluate the practical benefits of mVM in terms of
migration and reconfiguration speedup over a network testbed. We
then evaluate the accuracy of the mVM migration model against
different cloud simulators. Finally, we validate the capability of
mVM to address energy concerns and evaluate its scalability and
robustness by computing random migrations plans. Furthermore,
all the experiments presented in this Section are reproducible 2.

On real experiments, we use the original BtrPlace and a
scheduler derived from Memory Buddies [14] as representative
baselines. We selected BtrPlace, first because its migration model
is the same as other representative solutions [4], [6], [13] so their
decision capabilities should be similar. Secondly, BtrPlace allows
a precise comparison as the only software component that differs
between mVM and BtrPlace is the scheduler, the core contribution
of this paper. Memory Buddies scheduler provides also a relevant
baseline as it allows to control the migration parallelism. Its
approach consists in capping the amount of migrations to perform
in parallel with a constant to be defined from the knowledge of the
network topology.

On simulation experiments, we compare the migration esti-
mation accuracy of mVM against the predictions made by the
cloud simulator SimGrid [15] and two other representative mi-
gration models implemented in common cloud simulators such as
CloudSim [13].

5.1 Testbed setup
All the real experiments were conducted on the Grid’5000 plat-
form [27]. The testbed is composed of racks hosting 24 servers
each. Servers in a same rack are connected to a Top-of-Rack
(ToR) switch through a Gigabit Ethernet interface. All the ToR
switches are then connected together through a 10 Gigabit Ether-
net aggregation switch. Servers are also connected to a 20 Gbit/s
Infiniband network. For a better control of the network traffic, the

2. https://github.com/btrplace
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VM disk images are shared by dedicated NFS servers through
the Infiniband network while all the migrations transit through the
Ethernet network. We consider a dedicated migration network to
avoid any interference with the VM network traffic; a common
practice in production environment [28]. Each server runs a De-
bian Jessie distribution with a GNU/Linux 3.16.0-4-amd64 kernel
and the Qemu (KVM) hypervisor 2.2.50. The VM configuration
and the migrations were performed using libvirt. Each VM runs a
Ubuntu 14.10 desktop distribution with a single virtual CPU, the
maximum migration downtime is 30 ms and the workloads are
generated using stress.

5.2 mVM to speed up migrations

The experiment consists in scheduling and executing the migration
of 10 VMs with different memory usage between 4 servers
connected through an heterogeneous network. Each server has
2 quad-core Intel Xeon L5420, 16 GiB RAM and is connected
to a central switch through a Gigabit Ethernet interface. To
emulate a blocking network, the tc command limits the network
bandwidth of two servers at 500 Mbit/s. The VM memory used is
set to 2 and 3 GiB, equally distributed among the VMs. This
amount represents the real memory allocated to the guest by
Qemu, thus the one transferred during the migration. To ease the
reproducibility of our experiments, the memory workload for each
VM is generated using the tool stess by running 1,000 threads that
continuously write 70 KiB of RAM. This configuration allows
to mimic the workload memory pattern of common applications
types [20], [21]. We selected these specific values to reflect our
measurements of the memory activity generated by two different
HTTP benchmarks tools (httperf and ab). The memory activity
details (including HPs, HPd , and CPr) are defined in mVM
from real measurements realised through our custom KVM patch
developed for the occasion.

In this experiment, we compare the schedules computed by
mVM against a scheduler that reproduces Memory Buddies [14]
decisions. Similarly to mVM, Memory Buddies controls the mi-
gration parallelism, however it limits the parallelism to a constant
to be defined. Memory Buddies migrates the VMs at least two
at a time to fully exploit the two gigabit links when there are
migrations between the servers connected by Gigabit interfaces
and those connected by their emulated 500 Mbit/s interface. In
practice, it is configured with three different parallelism setups
that consist to migrate the VMs two, three, and four at a time. This
parallelism setup is a good tradeoff that allows to exploit the full-
duplex links capacity while limiting the risk of links saturation.
In practice, we compare mVM to three configurations of Memory
Buddies, referred as MB-2 to MB-4, where the parallelism varies
from 2 to 4. To perform a robust experimentation that covers a
wide spectrum of scenarios, we precomputed 50 runs of 10 mi-
grations each where the initial and the destination server for each
VM are computed randomly. This prevent experiments from any
bias due to a particular setup. Each run has been executed 3 times
for each VM scheduler. In this experiment the original BtrPlace
only computes full-parallel migrations plans due to its simplistic
migration model. As this behavior prevents some migrations to
terminate, we discarded the original BtrPlace scheduler for this
experiment.

Table 1 summarizes the average migration duration for each
scheduler. We first observe mVM outperforms every configuration
of Memory Buddies. Indeed, the migrations scheduled by mVM

TABLE 1
Absolute migration durations and relative slowdown compared to a

sequential scheduling

Scheduler mVM MB-2 MB-3 MB-4
Mean migration time (sec.) 45.55 57.22 113.2 168.6

Mean slowdown (%) 7.35% 29.69% 141.3% 259.2%
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Fig. 5. CDF of migrations duration slowdown compared to sequential
predictions. Migrations with a slowdown greater than 150% are not
displayed.

completed 20.4% faster than those computed by MB-2, the best
Memory Buddies configuration. To assess the absolute quality of
these results, we compared the durations to sequential migrations
computed on a flawless virtual environment. This exhibits the
potential migration slowdowns due to parallelism decisions. We
observe an average 7.35% slowdown for mVM while it is at
least 4 times higher for MB-2. Figure 5 depicts the migration
slowdowns as a Cumulative Distribution Function (CDF). We
observe 88.8% of the migrations scheduled by mVM have a
slowdown of 5 seconds at maximum, against 52.8% for MB-2. We
also observe that the slowdown distribution for mVM is gathered
while it is scattered for Memory Buddies and increasing with the
concurrency.

These improvements over Memory Buddies are explained by
better parallelism decisions. Indeed, Memory Buddies parallelizes
the migrations statically without any knowledge about network
topology or VM placement. This can produce an insufficient usage
of the overall network capacity and an undesired concurrency
between migrations on a same network path. This reduces the
migration bandwidth, thus leads to more retransmissions of dirty
memory pages and higher migration durations. On the other side,
mVM infers the optimal number of concurrent migrations over
the time from its knowledge of the network topology. In practice,
we observed the number of concurrent migrations varied from
2 to 5. We also observe mVM took better parallelism decisions
than the most aggressive Memory Buddies configuration while
producing a lower slowdown than the most conservative one.
As a result, mVM migrates each VM at maximum speed and
parallelizes them to maximize the usage of the network capac-
ity. We finally observe three abnormally long migrations with
mVM. A post-mortem analysis revealed these durations were
caused by the technical limitations of our testbed. Indeed, when a
server sends and receives migrations simultaneously at maximum
speed through a 500 Mbit/s limited interface then the traffic
shaping queuing mechanism is not fair and we observe periodic
bandwidths slowdown. We reproduced this disruption using the
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iperf tool and measured a slowdown varying from 100 Mbit/s to
200 Mbit/s. This problem also occurs using Memory Buddies as
the chances to migrate multiple VMs on a same link increased
with the parallelism, but are not displayed due to a lack of space.

TABLE 2
Absolute completion times and relative speedup compared to a

sequential scheduling

Scheduler mVM MB-2 MB-3 MB-4
Mean completion time (sec.) 212.8 295.9 394.6 479.4

Mean speedup (%) 54.18% 36.42% 15.94% -2.64%

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●0

25

50

75

100

−80 −60 −40 −20 0 20 40 60
Completion time speedup [%]

P
er

ce
nt

ag
e 

of
 r

un
s

●

 mVM
 MB−2
 MB−3
 MB−4

Fig. 6. CDF of completion times speedup compared to sequential exe-
cutions.

Table 2 shows mVM produces shorter completion times than
Memory Buddies. We observe executions completed on average
28.1% faster than with MB-2, the best configuration for Memory
Buddies. mVM completed the executions in average 83.1 seconds
earlier than MB-2. To assess the quality of these results, we
compared completion times to predicted values of a pure sequen-
tial scheduling. We observe an average speedup of 54.18% for
mVM while it is at least 1.49 times lower with MB-2. Figure 6
depicts the completion times speedup as a CDF. It first confirms
mVM exhibits the most important speedup. We also observe
that the speedups for MB-3 and MB-4 are scattered and not
always positives. This confirms that a blind over-parallelization
of the migrations can produce longer completion times than a
pure sequential scheduling. Indeed, as a consequence of the live-
migration iterative behaviour, when the bandwidth on a network
path is shared between too many migrations, the low bandwidth
allocated to each migration leads to an exponential increase of
their durations (see Section 3.3.1).

This overall improvement is due to the parallelism and clus-
tering decisions taken by mVM. As explained before, mVM
optimizes the parallelism according to the migration routes and the
available bandwidth while Memory Buddies decisions are capped
by a constant. Furthermore, contrarily to Memory Buddies, mVM
infers how to group the migrations according to their predicted
duration. This reduces the periods where the network is underused
and consequently the completion time. As a conclusion, this
experiment confirmed that predicting the migration duration to
compute an adaptive level of parallelism and a tight migration
clustering is a key to compute efficient schedules. Indeed, while
mVM computed the shortest plans, no particular configuration of
Memory Buddies outperform the others.

A part of the experimental gain of mVM comes from decisions
based on an analysis of the VM dirty pages rate. Despite such an

approach is a common practice in the state of the art and has
already been tested under production workloads [9], [20], [21],
some VMs might still have a fuzzy dirty pages rate. In this case
the estimated migration duration might be inaccurate and fool
mVM. However, this does not prevent mVM to compute wise
schedules with regards to Memory Buddies. Indeed, despite these
mis-estimations might bias the clustering decisions thus extend
the completion time, they have no impact on mVM parallelism
decisions that solely depends on the network model. Unlike Mem-
ory Buddies there will still be no excessive parallelism decisions,
therefore keeping migrations as short as possible.

5.3 Migration model accuracy

To assess the accuracy of our migration model, we compared the
prediction deviation of common state-of-the-art cloud simulators
against the real execution performed by mVM. Based on the same
experiment setup than Section 5.2, we reproduced the scheduling
decisions computed by mVM in all the selected simulators.

The first chosen migration model is representative of most
common cloud simulators that ignore both the core network
topology and the VMs workload. For instance, the well-used
CloudSim [13] simulator, but also Entropy and BtrPlace do not
considers the whole topology to migrate VMs but the servers
network interfaces only. The VMs memory dirty pages rate is also
ignored. We refer to this family of models as NoShare.

For the second migration model, namely NoDP, we decided to
compute the migration time by only ignoring the workload running
on VMs. The whole network topology is however considered,
therefore this simulation model is only devoted to exhibit the
migration deviation induced by ignoring the memory dirty pages
rate of the VMs.

The third chosen migration model is the one implemented in
the simulator SimGrid. It relies on a very realistic flow-based
network model by using SFQ queuing mechanism, and considers
full-duplex links and cross-traffic effects that impact on migration
speed. The migration model also considers the VM memory dirty
pages generation behavior [16]. It is represented by a dirty pages
intensity modeled as a percentage of the available bandwidth
tempered by the VM CPU usage. By considering a single constant
rate of dirty pages, namely DPr, the migration duration d(m) is
modeled by SimGrid using the following formula:

d(m) =
mu(m)

bw(m)−DPr
(10)

The dirty pages rate intensity DPi is then obtained from the
Equation (11) where cu(m) is the CPU usage of the VM to
migrate, in percentage:

DPi =
DPr

(cu(m)×bw(m))
(11)

The migration duration can thus be written:

d(m) =
mu(m)

bw(m)− (DPi× cu(m)×bw(m))
(12)

To setup SimGrid with representative parameters from our
testbed, the CPU usage cu(m) is set to 100% which corresponds
to our stress workload. To retrieve a dirty pages intensity DPi
that also fits our workload, we first computed the amount of dirty
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Fig. 7. CDF of normalized migration duration estimation error.

pages generated during both the shortest and the longest observed
migrations (resp. 20 to 61 seconds). We then deduced the two
constant dirty pages rates that produce the equivalent amount of
pages and retrieved the corresponding dirty pages intensity DPi
from the equation 11. We obtained a dirty pages intensity varying
from 5% to 7% and selected the average of 6% as the global dirty
pages intensity for each VMs.

The CDFs in Figure 7 show the normalized deviation of
individual migration duration for each simulation environment.
Precise values for all simulators are provided in Table 3.

TABLE 3
Normalised migration deviation compared to real execution

Migration model NoShare NoDP SimGrid mVM
Mean (%) 32.28 19.54 8.31 6.47

Std. dev. (%) 20.17 5.34 7.2 4.41
1st Quartile (%) 16.16 15.79 3.82 2.55

Median (%) 20 17.42 6.12 7.49
3d Quartile (%) 58.17 22.58 10.55 9.09

As expected, we observe that NoShare produces the longest
migration deviations to reach 32.28% in average. The correspond-
ing CDF is divided in two parts. 68% of the migrations are
affected by only disregarding the VMs workload and the 32%
others are mis-estimated due to both the workload and network
sharing issues. In the last and worst case, the deviation ranges from
57% to 72% which obviously leads to strong practical scheduling
issues.

NoDP produces long migration deviation with an average of
19.54%, three times higher than with mVM. Furthermore, its
best prediction still induces a deviation of 10% against the real
migration performed. This exhibits the importance of considering
the memory activity of the VMs to estimate the migration duration.

By comparing SimGrid and mVM, we observe that the de-
viation are similar for 75% of the migrations. However, the
average deviation is slightly slower using mVM where 95% of the
migrations have at most 11% deviation against 77% for SimGrid.
This demonstrates that the migration model of mVM, based on two
distinct dirty pages rates (namely HPr and CPr), is more accurate
than the single constant rate DPr considered in SimGrid.

To analyze the migration deviation at a finer grain, the CDFs
in Figure 8 show the distribution between under and over estima-
tions. We first notice mVM provides stable results, the estimation
deviation is balanced between low under- and over-estimation and
never exceeds 11%.
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Fig. 8. CDF of relative migration duration estimation error.

Regarding SimGrid, we observe that the overall trend is to
slightly underestimate the migration duration. This reflects its
migration model, based on a single dirty pages rate, that tends
to misestimate the actual overhead induced by the VMs memory
activity. Indeed, by degrading our current model to a single rate,
we undeniably lose accuracy by approximating a common value
that will best suit all the migrations.

Additionally, despite a robust networking model, SimGrid
tends to highly overestimate 20% of the migration durations to
reach a 55% deviation in the worst case. This happens with
migrations scenarios involving full-duplex network links usage in
both uplink and downlink. We estimate that this overhead is due
to an exaggeration of the cross traffic effects on the transfer speed.

The 5% negative outliers on all simulations are due to the
traffic shaping setup in our testbed. Indeed in some particular
cases, especially when the 500 Mbit/s links are used in full duplex,
the migrations speed may decrease to 30% of its theoretical
transfer speed induced by the traffic shaping. These outliers can
be therefore ignored for the strict comparison of migration models
accuracy.

5.4 mVM to address energy efficiency

This experiment evaluates the practical benefits of mVM when ad-
dressing energy concerns during migrations. It consists in execut-
ing a decommissioning scenario over multiple servers and observe
the capabilities of mVM to compute schedules that consume less
energy or to restrict the overall power consumption. Contrarily
to BtrPlace, Memory Buddies cannot schedule the actions that
consists in turning on or off servers. Accordingly, we use the
original BtrPlace as a representative baseline for this experiment.

The testbed is composed of 3 racks. Each rack consists of 24
servers with one Intel Xeon X3440 2.53 GHz CPU and 16 GiB
RAM each. ToR switches connect the servers through a Gigabit
Ethernet while the ToR switches are connected by a 10 GBit/s
aggregation switch. The decommissioning scenario consists in
migrating the VMs from two racks to the third one. To save
power, the destination servers are initially turned off and the
servers to decommission have to be turned off once their VMs
are migrated. Each source server hosts 2 VMs. This amounts
to 96 VMs to migrate from 48 to 24 servers. Every VM uses 1
virtual CPU and the allocated memory is set to 2 GiB and 4 GiB
RAM equally distributed among the VMs. As BtrPlace tends to
over-parallelize the migrations, all the VMs are set idle to prevent
endless migration.
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Fig. 9. Power consumption of migration plans.

To calibrate the energy models with realistic values, we reused
the experimental values from [20] for the migration energy model
while the idle energy consumption of the servers were measured
directly from the testbed (see Table 4).

TABLE 4
Energy model calibration

Model element Energy model
Server consumption (idle) 110 W× running duration
Server boot overhead 20 W× boot duration
VM hosting 16%× idle × hosting duration
Migration 0.512× transferred data +20.165

5.4.1 Energy saving capabilities
Figure 9 compares the power usage of the same decommissioning
scenario scheduled by either BtrPlace or mVM. As the testbed is
not instrumented enough to measure the power consumption of
each server, the values were computed from the energy model.
We observe that mVM saved a total of 1.128 megajoules com-
pared to BtrPlace, a 21.55% reduction. This is explained by the
schedule computed by mVM that allowed to turn off the source
servers sooner thanks to faster migrations. At the beginning of the
experiment, the instantaneous power consumption grows up from
7 kW to 10 kW with both schedulers. This increase is explained
by the simultaneous boot of the 24 destination servers during 2
minutes. Once available, BtrPlace launches all the migrations in
parallel. This results in very long migration durations. As all the
migrations terminate almost simultaneously at minute 7, it is then
impossible to turn off any source server before that time. With
mVM, migrations complete faster and some source servers are
being turned off from minute 2. This behavior can be seen by the
regular going down steps on Figure 9.

We observe mVM schedules the migrations 10 by 10. These
groups were defined to maximize the bandwidth usage and mini-
mize the migration duration. As stated in Section 4, the MaxBand-
width optimization forces a 1 Gbit/s bandwidth per migration, so
the 10 by 10 parallelization fully uses the 10 Gbit/s link that
is connected to the destination switch. Also, in order to obtain
a 10 Gbit/s data flow, the migration groups where all chosen
from 10 different source and destination servers at a time and
grouped by their predicted duration. With mVM, we also observe
small peaks in the energy consumption. They correspond to the
termination of a migration group and the beginning of a new one.
In theory, these sequences follow on from each other. However the
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Fig. 10. Impact of a power capping on the power usage.

small predictions errors (around 7%) imply to synchronize these
transitions to maintain the original schedule and avoid overlapping
actions. At the end, the completion time exceeded the prediction
by only 5 seconds.

5.4.2 Power capping capabilities
The PowerBudget constraint restricts the instantaneous power
consumed by the infrastructure during the reconfiguration process.
As it restricts the consumption over the time, this constraint can
delay some migrations or any actions, depending on their power
usage. To verify the effectiveness of the power budget constraint
on the scheduling decisions, we executed the decommissioning
scenario under a restrictive power budget of 9 kW.

Figure 10 shows the power consumption of the predicted and
the observed scheduling. We first observe mVM reduced the peak
power consumption to stay under the threshold. In practice, the
PowerBudget constraint forced to spread the boot actions during
the first 5 minutes of the execution. A first set of actions was
executed at the beginning of the experiment to finish at minute
2. Then, the remaining actions where scheduled later, in smaller
groups that partially overlap. From minute 2 to 5, we observe
that the power consumption is very close to the 9 kW budget.
Indeed, mVM executed a few migrations in parallel to fill the
gap and to try to terminate the operation as soon as possible. It
was however not possible to migrate the VMs 10 by 10 contrary
to the previous experiment. As a result, the operation required
1.5 additional minutes to complete with regards to an execution
without PowerBudget (see Figure 9).

Despite we measured a prediction accuracy of 93% for the
migration durations, we observe that the practical completion time
exceeds the prediction by 32 seconds. This is mainly explained by
the larger number of synchronization points inserted by the Ex-
ecutor to maintain the computed sequence of migrations and thus
comply with the capping constraint. There is also an inevitable
latency that is due to the time to contact the hypervisors, initiate
the migrations and wait for KVM to reach the expected transfer
rate.

5.5 Scalability
Computing the moment to start each migration with regards to
bandwidth requirements is NP-Hard. In practice, the time required
by mVM to compute a schedule depends on the amount of VMs
to migrate, the number of network elements, and their bandwidth
capacity. We successively evaluate the solving duration speedup of
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the MaxBandwidth optimization and the computational overhead
of mVM against the original BtrPlace.

5.5.1 Experiment setup
To evaluate the scalability of the mVM scheduler, we used the
same experiment setup as described in Section 5.4, and we scaled
it up to 18 times using two different scaling factors.

The first scaling factor increases the infrastructure size. It is
applied on the aggregation switch capacity and the number of
racks to increase the number of network elements. At the largest
scale (x10), each instance consists in scheduling the migration of
960 VMs running inside 20 racks of 24 servers each, to 10 new
racks. While all the servers are still connected to their ToR switch
through a Gigabit Ethernet link, the aggregation switch provides
a 100 Gbit/s bandwidth which we consider as an exceptional
bandwidth for a datacenter. Regarding the mVM internals, this
experiment evaluates the consequences of adding cumulatives
constraints and migration tasks.

The second scaling factor increases the amount of VMs in
the infrastructure and the node hosting capabilities (memory and
CPU resources). At the largest scale (x18), each instance requires
to migrate 1728 VMs hosted on 2 racks of 24 servers each
to a single rack. The consolidation ratio reaches 72 VMs per
destination server and is also considered as exceptional for current
datacenters. As an example, if each VM requires 4 virtual cores,
this placement can even saturate the latest generation server of
Bull, the bullion S, equipped with 288 cores on 16 Intel Xeon
processor E7 v3. Regarding the mVM internals, this experiment
evaluates the consequences of adding migration tasks.

To provide representative computation times, we generated
100 random instances for each scale and resolved each of them
10 times using both mVM and BtrPlace.

5.5.2 MaxBandwidth optimization
The MaxBandwidth optimization consists in only retaining the
maximal bandwidth available on each migration path and its
associated duration. Contextually, this optimization brings down
the problem to a single-mode RCPSP which results in a significant
reduction of the variables domain size and thus reduces the overall
solving duration of mVM.

For these experiments, each node hosts up to 4 VMs and is
connected to the network with a 1 Gbit/s link capacity. Therefore,
the maximal amount of ongoing or outgoing migrations per node
is 4. Hence, to allow a maximal parallelization of the migrations,
we configured mVM to allow 4 different bandwidth allocations
per migration, with steps of 250 Mbit/s when the MaxBandwidth
optimization is disabled.

The random instances are generated by computing both ran-
dom initial and final VMs placements among the predefined
groups of source and destination nodes. Thus, despite the random
placements, the scenario remains the same as the decommission-
ing experiment performed in Section 5.4.

We compare the computation time of mVM with the optimiza-
tion enabled or disabled. Figure 11 shows the average computation
time along with the 95% confidence intervals for each migration
model and scaling factor. To ease data representation, we discarded
the instances that required a computation time longer than a
minute. The percentages of solved instances are however available
in Table 5.

The results show that enabling the MaxBandwidth optimiza-
tion reduces the computation time by up to 74% at the initial
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Fig. 11. Comparison of the mVM solving duration depending on the
MaxBandwidth optimization and the scaling factor. When the MaxBand-
width optimization is disabled, each migration has 4 different bandwidth
allocations allowed by steps of 250 Mbit/s.

TABLE 5
Instances solved in a minute depending on the MaxBandwidth

optimization and the scaling factor

MaxBandwidth option
Scale disabled enabled

x1 65% 100%
x2 22% 100%
x4 83% 100%
x10 62% 100%

(a) Infrastructure size

MaxBandwidth option
Scale disabled enabled

x1 66% 100%
x2 57% 100%
x4 47% 100%
x8 0% 100%
x18 0% 100%

(b) Amount of VMs

scale and increases the number of solved instances. When the
infrastructure size increases (Figure 11a), the computation time
for the two models increases exponentially but without deviat-
ing significantly. At the largest scale, enabling the optimization
reduces the computation time by 3.2 seconds, a 51% speedup.
Where the number of VMs increases (Figure 11b), only a few
instances from scale x1 to x4 are solved in a minute when the
option is disabled. This explains the larger confidence interval
and the exponential increase of the solving duration. Enabling the
optimization allowed to solve every instance in a minute with 43
times lower durations in average at scale x4.

Table 6b shows the amount of solved instances does not
necessarily decrease when the size of the infrastructure increase.
Indeed, at scale x2 and with the optimization disabled, mVM
solved only 22% of the instances and 83% at scale x4. This
variability is explained by the random placements that lead to
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numerous cumulative constraints. In such conditions, a variable
height and duration for the tasks may easily lead the solver to
take wrong decisions on variable instantiations thereby drastically
increasing the computation time.

To conclude, this experiment shows that forcing the bandwidth
to allocate to the migrations and pre-computing their duration
improve the performances with no counterparts.

5.5.3 mVM against Btrplace

In this experiment, we compare the time that is required to
compute the schedule using mVM or BtrPlace with instances
generated randomly. A preliminary scalability experiment was
conducted in [26], however the solved instances only represented
symmetric server decommissioning scenarios. We observed the
initial heuristic was over specific and prevented mVM to solve
randomly generated instances in a minute. The optimizations
discussed in Section 4 fixed that robustness issue. Now every
randomly generated instances are solved by mVM. Furthermore,
to provide a more robust analysis of our migration model, in this
experiment we computed random VMs placements among the
entire set of nodes and thus without relying on a decommissioning
scenario. Figure 12 shows the results.
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Fig. 12. Computation time of mVM and BtrPlace depending on the
scaling factor

At the lowest scale, mVM takes 9.4 ms more than BtrPlace
to compute a solution, that is a 48% increase. When the size of
the infrastructure increases, the overhead increases up to 82%. At
this scale, mVM requires 2.6 seconds to schedule 960 migrations
between 720 servers. When the number of VMs increases, the
overhead increases up to 231.8%. mVM requires then 7.3 seconds
to schedule 1728 migrations between 72 servers. This overhead
is explained by the additional computations made by mVM to
provide reliable, fast, and energy efficient schedules in practice.
Even if the relative overhead is significant, the time required to

compute a schedule stays negligible with regards to the time that
is required to execute it. Indeed, at the highest scales, the schedules
computed by mVM are predicted to take from 152 to 224 sec. by
increasing the number of VMs, and from 22 to 26 minutes by
increasing the infrastructure size. Therefore, in the worst case the
computation phase only represents 1.7% and 0.6% of the execution
phase when the number of VMs and the infrastructure size are
respectively scaled up.

We finally observe that at equivalent scaling factors, the
overhead of mVM is bigger when the number of VMs increases.
For example, at scale x4 the computation time of mVM is 36.5%
higher by scaling up the number of VMs rather than the infras-
tructure. This difference is explained by the network model. A
cumulative constraint has a O(n2) time-complexity where n is the
number of tasks to schedule. This indicates that adding more tasks
on the same cumulative constraints, i.e. adding more VMs per
network element, is more computationally intensive than adding
more cumulative constraints with the same amount of tasks.

We also globally observe slower computation times for mVM
than with the decommissioning scenario in Figure 11. This is
mainly explained by the network links usage. Indeed, while the
number of migrations remains exactly the same, dissolving the
static groups of source and destination nodes leads to a global
lower consolidation. Therefore, the nodes links are used less
intensively and the amount of tasks per cumulative constraints
is reduced consequently. Additionally, unlike in the decommis-
sioning scenario, each network link may also be used in full-
duplex. This results in more cumulative constraints (i.e. one per
link direction) with fewer migration tasks placed on them thereby
reducing the overall computation time.

At a very large scale, the solving duration for mVM might
become significant with regards to the completion time. A solution
to overcome this limitation would be to split the operation in
multiple steps. At the moment the bandwidth used to migrate VMs
exceeds the aggregation switch capacity, mVM migrates the VMs
by group. Accordingly, with a 100 Gbit/s interconnect, asking
mVM once to migrate 960 VMs or asking mVM twice to migrate
480 VMs at each step would lead to the same observable result
while being less stressful for the datacenter operator.

6 RELATED WORKS

6.1 Migration scheduling in VM managers

Many works such as [4], [6], [12], [13] estimate the migration
duration to be equal to the VM memory usage divided by the net-
work bandwidth. The experiments discussed in Section 5 proved
that this assumption is not realistic. This ignores the principles
of the pre-copy algorithm or assumes that the VMs do not write
into their memory. It also assumes a non-blocking network where
none of the VMs to migrate are co-located. Memory buddies [14]
addresses the impact of concurrent live-migrations by capping
the concurrency with a number to be defined. The experiments
discussed in Section 5 also proved that this assumption is not
optimal. Indeed, the concurrency cannot be constant as it depends
on the current network load and the migration path. COMMA [10]
considers the network bandwidth and the dirty pages rate to syn-
chronize in real time the termination of strongly communicating
VM migrations. It however assumes a single network path for all
the VMs. mVM implements the concept of COMMA with the
Sync constraint but with the knowledge of the whole topology.
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[29] and [9] study the factors that must be considered to
schedule live-migrations efficiently. While Ye et al. [29] focus on
resource reservation techniques on the source and the destination
servers, [9] focus on the network topology and the dirty pages
rate. These two works discuss about different scheduling policies
that should be considered for the development of a migration
scheduler. However, none of them proposes that scheduler.

Sarker et al. [30] propose an adhoc heuristic to schedule
migrations. The heuristic reduces the completion time according to
the network topology and a fixed dirty pages rate. The heuristic is
only compared to a custom algorithm that schedules the migrations
randomly with regards to their theoretical completion time. The
accuracy of the migration model is not validated on a real testbed.
We propose with mVM a migration model based on a two-stage
process deduced from the practical observations of the workload.
Our scheduler can be enhanced to support additional constraints
and we evaluated its prediction and benefits on a real testbed.

Bari et al. [31] restrict parallelism to migrations with disjoint
paths only. With regards to the topology of our experiments in
Section 5.2, this lead to migrate up to 2 VMs in parallel while
mVM migrate up to 5 VMs in parallel at full speed with a
negligible overhead. Yao et al. [32] restrict parallelism within the
same rack while guaranteeing at least 70 percent of maximum
migration speed. Such a simplification would lead to purely se-
quential migrations in our experiments. Wang et al. [33] consider
a non-blocking network and the multi-path routing feature made
available by SDN controllers to increase the migration bandwidth.
mVM supports blocking networks and does not rely on any SDN
features. These algorithms are only evaluated through simulations
with no guarantee over the simulator accuracy while we provide
extensive experimentations on a real network testbed.

6.2 Predicting live-migration duration for simulation

The simulation community studies carefully live-migration per-
formances to provide accurate cloud simulators. The migration
models of [21], [30] assume an average memory dirty pages rate
that is refined during the simulation by the analysis of the predic-
tion errors. Our approach predicts the migration duration statically
by a preliminary analysis of the VMs load. We model the memory
dirty pages generation in a two-stage process based on the analysis
of common workloads observation. Haikun et al. [20] propose a
migration performance model based on the memory dirty pages
transfer algorithm implemented in Xen. They consider both static
and refined dirty pages rate build on historical observations and
assume that the Writable Working Set size should be transferred in
one round thereby determining the VM downtime. In contrast, we
model the dirty pages rate using a two-stage approach based on
KVM behavior and we consider a preset maximum downtime for
each VM migration. They also do not tackle migration scheduling
and network topology that are the main contributions of this paper.

The CloudSim simulator [13] provides a model to estimate
the migration duration but the model relies on the assumptions of
Beloglasov et al. [6] discussed previously. Takahiro et al. [16]
implemented the pre-copy migration algorithm in the Simgrid
simulator. They reproduce the memory dirty pages generation
behavior by using a single rate but with unusual linear correlation
on the CPU usage. In contrast, we define the dirty pages generation
rate as a two-stage process, according to live VM memory obser-
vations and independently of the CPU usage. Sherif et al. [21]
proposes a simulator to reproduce the Xen migration algorithm

with two different models. The first one is based on a constant
average memory dirty pages rate. The second model is a dynamic
algorithm that learns from previous observations.

The aforementioned algorithms predict live-migration dura-
tions under different assumptions. To the best of our understand-
ing, our model embraces the particularities of these algorithms but
not their limitations. None of these models are however devoted
to be used to compute migration schedules. [21], [30] reduce
prediction errors with a feedback loop. Such an approach is not
compatible with the need to compute a migration plan.

7 CONCLUSION

Live-migrations are used on a daily basis by consolidation algo-
rithms and datacenter operators to manage the VMs on production
servers. Current VM managers compute a placement of quality
but usually neglect the main factors that impact the migration
duration. This leads to unnecessarily long and costly migrations,
and consumes an excessive amount of energy. We propose mVM,
a migration scheduler that infers the best moment to start the
actions and the amount of bandwidth to allocate to them with
regards to the VM workload, the network topology and user-
specific constraints. mVM is implemented as a set of extensions
for the VM manager BtrPlace in place of the old scheduler.

The accuracy of the migration model has been validated
through random migrations plans simulation against the execution
on a real testbed. We compared mVM predictions to the cloud
simulator SimGrid [15] and two representative migrations models
such as the one implemented in CloudSim [13] and the original
BtrPlace [12]. Results show that mVM migration model is most
accurate than any other with an average accuracy of 93.9%.

The scheduling decisions of mVM have been validated through
experiments on a real network testbed compared to the original
scheduler of BtrPlace and a scheduler that mimics Memory
Buddies [14] decisions. Micro-experiments have shown that mVM
outperforms both schedulers. On migration plans generated ran-
domly, migrations scheduled by mVM completed 20.4% faster
than Memory Buddies, with completion times reduced by 28.1%.
Contrarily to Memory Buddies, mVM always outperforms se-
quential scheduling with a completion time speedup of 54.18%.
Migration durations are close to the optimal with a slowdown of
7.35% only, 4.5 times lower than with Memory Buddies.

Macro-experiments validated the use of mVM to address en-
ergy concerns. On a server decommissioning scenario involving 96
migrations among 72 servers having their ToR switches connected
by a 10 Gbit/s aggregation switch, mVM reduced the energy
consumption of the operation by 21.5% compared to BtrPlace.
We also validated the control capacity of mVM by capping the
power consumption of a schedule. Depending on the budget, mVM
delayed migrations and server state switches to guarantee the
power consumption remains below the given threshold. Finally, a
scalability evaluation has shown that mVM is suitable to schedule
thousands of migrations. By varying the consolidation ratio or the
infrastructure size, we observed the computation time of mVM
amounts for less than 1% of the completion time.

As a future work we want to merge the scheduler with the
placement model of BtrPlace. Indeed, some schedules might
be considered sub-optimal with respect to placement algorithm
expectations in terms of reactivity. With a tight coupling between
the two models, the placement algorithm will be able to revise its
placement with respect to the scheduling decisions.
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AVAILABILITY

mVM is available as a part of the BtrPlace scheduler under the
terms of the LGPL license. It can be downloaded, along with
all the material related to the reproduction of the experiments at
http://www.btrplace.org.
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