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ABSTRACT
In an Infrastructure As A Service (IaaS) cloud, the scheduler de-
ploys VMs to servers according to service level objectives (SLOs).
Clients and service providers must both trust the infrastructure. In
particular they must be sure that the VM scheduler takes decisions
that are consistent with its advertised behaviour. The difficulties to
master every theoretical and practical aspects of a VM scheduler
implementation leads however to faulty behaviours that break SLOs
and reduce the provider revenues.

We present SafePlace, a specification and testing framework that
exhibits inconsistencies in VM schedulers. SafePlace mixes a DSL to
formalise scheduling decisions with fuzz testing to generate a large
spectrum of test cases and automatically report implementation
faults.

We evaluate SafePlace on the VM scheduler BtrPlace. Without
any code modification, SafePlace allows to write test campaigns
that are 3.83 times smaller than BtrPlace unit tests. SafePlace per-
forms 200 tests per second, exhibited new non-trivial bugs, and
outperforms the BtrPlace runtime assertion system.
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1 INTRODUCTION
Infrastructure As A Service (IaaS) clouds provide clients with hard-
ware via VirtualMachines (VMs). Inside the cloud, the VM scheduler
is responsible for deploying the VMs to appropriate physical servers
according to the established Service Level Objectives (SLOs). When
environmental conditions (failures, load spikes, etc.) or the clients’
expectations evolve, the VM scheduler reconfigures the deploy-
ment accordingly, using actions over the VMs and the servers. The
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SLO covers, for example, the expected availability, the minimum
amount of resources to allocate, and possible placement constraints.
Providers typically bill the client according to the amount of re-
sources allocated and consumed, offset by any penalties to the
provider incurred when the SLO is not met.

The VM scheduler is the cornerstone of the good functioning of
an IaaS cloud. The provider bases his offering and the clients base
their requirements on its features. The scheduler implementation
is then expected to take decisions that are aligned with its docu-
mented behaviour. Implementing a VM scheduler that is correct, i.e.
that behaves according to its documentation requires a strong do-
main specific expertise. For example, to implement a VM operation,
a developer must understand the infrastructure management capa-
bilities and ensure that the implementation matches the expected
preconditions of this action. To implement a placement constraint,
the developer must master several families of combinatorial prob-
lems (e.g. packing and task scheduling problems) and ensures that
the code fits the many possible situations.

The difficulties to master every theoretical and practical aspects
of VM scheduling leads to defective implementations that reduce the
hosting capacity and thus reduces the provider revenue or breaks
the SLO thus the client confidence. The current approach to develop
VM schedulers and to ensure their quality is thus not effective. On
the one hand, developers may not understand all the parameters
that must be considered when they implement a component. On
the other hand, common testing methods like unit testing, smoke
tests, peer code-reviews or even static analysis are not sufficient to
counteract the reasoning issues of developers.

In this paper, we present SafePlace, a testing framework to ease
debugging of VM schedulers by checking that their implementation
is correct against their expected behaviour. This solution is illus-
trated on BtrPlace [13], an open-source VM scheduler that received
contributions from developers with various expertise. BtrPlace is
also used in production by Nutanix, a provider of entreprise clus-
ters, to mitigate local load spikes in thousands of private entreprise
clouds1.

The first contribution of this paper is a Domain Specific Language
(DSL) to be used by the developers to specify the behaviour of
VM schedulers. The second contribution is a complete software
stack for testing VM schedulers. This includes first a parametric fuzz
testing [20] environment to generate a large number of test cases
and supersede the traditional unit tests that are long to write and
biased by the developer perspectives. It also includes the testing
environment to check the constraint implementations with regards
to their expected behaviour. The third contribution is an analysis
of the defects found in BtrPlace thanks to our technique. Our key
results are:

Expressivity of the specification language. Constraint spec-
ifications are 50 characters long on average. The core of BtrPlace
1For more details, refer to http://www.nutanix.com

https://doi.org/10.1145/3127479.3128608
https://doi.org/10.1145/3127479.3128608
http://www.nutanix.com


SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA Fabien Hermenier and Ludovic Henrio

was specified using 4 invariants. We specified 23 of its placement
constraints that address affinity, resource allocation, state manage-
ment, and hosting restrictions concerns. The specification language
provides also the required features to specify all the constraints
available in OpenStack Nova, VMWare DRS and the Acropolis Op-
erating System (AOS) from Nutanix.

Usability of the testing suite. A test campaign is written with
3.83 times less lines of code than a single unit test of BtrPlace. A test
campaign can run 200 different test cases per second which is fast
enough to be executed directly from the development environment.

Effectiveness and identification ofmeaningful defects. Safe-
Place exhibited defects such as un-anticipated state transitions or ac-
tion interleaving and aggressive optimisation that cannot be found
using traditional testing methods. Those defects lead to crashes,
SLO violations, and an under-utilisation of the resources. The spec-
ification based verification of SafePlace exhibit 2.23 times more
defects than the assertion-based system of BtrPlace.

The rest of the paper is organised as follows. Section 2 discusses
the internals of a VM scheduler and its possible bugs. Section 3
presents the specification language. Section 4 details the verification
framework. Section 5 evaluates the benefits of the solution. Section 6
discusses the related works. Finally, Section 7 gives our conclusions.

2 BACKGROUND
A VM scheduler configures or reconfigures the allocation of the
VMs to the different servers. Its solution must comply with the
constraints provided by the user and the infrastructure. We first
present in this section how VM schedulers compute such a solution.
We then derive a defect taxonomy from an analysis of the issues
reported in OpenStack Nova2, Apache CloudStack3, and BtrPlace4.

2.1 The VM scheduling process
A VM scheduler computes suitable hosts for running the VMs de-
pending on the state of the system, triggers resource allocation
and schedule the actions to be overtaken. The search space asso-
ciated to a problem to solve is then very large and the density of
solutions varies depending on the workload and the infrastructure
characteristics.

From a theoretical point of view, computing a solution consists
of filtering the search space to only retain the decisions satisfying
all the requirements. The filtering is explicit inside OpenStack Nova
and CloudStack when the developers implement SLO enforcement
algorithms. Each algorithm is a plugin that receives as arguments a
set of possible hosts for the VM under control and removes among
them those not satisfying the SLO specification. Each time the
scheduler is invoked to decide where to place a VM, it chains the
plugins to retrieve eventually the satisfying hosts and pick one
among them. In BtrPlace, the filtering is implicit. The developer
writes a constraint on top of a core Constraint Satisfaction Problem
(CSP) to model the SLO. The specialised CSP is then solved using
context specific filtering algorithms that prune from a search tree
the branches where the constraint is not satisfied.

2http://www.openstack.org
3http://cloudstack.apache.org
4http://www.btrplace.org

2.2 Constraint taxonomy
Our analysis of the three schedulers exhibited 2 kind of constraints:
core constraints and side constraints.

Core constraints are inherent to the hardware and the hyper-
visor capabilities. They restrict the reachable states for the VMs
and the nodes depending on the current state. Core constraints
specify the life-cycle of the elements under control and are then
always enabled to ensure that the infrastructure is in a correct state.
Core constraints prevent a VM to be booted if it is already running
for example, or to live-migrate [6] a VM to an offline node. Core
constraints also impose some precedence between actions. For ex-
ample, by stating a running VM is necessarily placed on an online
node, it prevents a node to go offline before all its hosted VMs are
evacuated.

Side constraints allow the users to express their demand and
implement a given SLO. A side constraint can have arguments to
specify the elements under control or other SLO parameters. It
can be guaranteed in a discrete or a continuous manner [7]. When
discrete, the constraint must only be satisfied at the end of the VM
(re)allocation process. When continuous, it must be satisfied at any
moment of the element lifetime.

VM schedulers offer numerous side constraints to address a
large range of concerns through different concepts. For example,
the affinity and anti-affinity constraints consider the VM placement
absolutely or relatively to other VMs or nodes. Resource matchmak-
ing capabilities control the allocation of shareable resources (e.g.
Preserve in BtrPlace) or enforce the presence of particular hard-
ware on some nodes (e.g. PciPassthroughFilter in OpenStack
Nova). Side constraints are also used to cap various counters. For
example, they cap the number of VMs in a given state or location,
or the number of online nodes (e.g. NumInstancesFilter in Open-
Stack Nova). Finally, some constraints address temporality issues
(e.g. NoDelay to deny deferrable actions in BtrPlace).

2.3 Defects inside filtering algorithms
Inside OpenStack Nova, CloudStack and AOS, the code is checked
with unit tests, modifications are peer-reviewed and smoke testing
on a real testbed ensures that critical features are always working
in practice. Finally, quality-assurance teams validate the features
through practical stress testing on a testbed. The open-source code
of BtrPlace constraints is checked by 81 unit tests, which provide
80% code coverage. The developer of a side constraint must also
provide a checker to be invoked each time BtrPlace computes a
schedule. In total, more than 4,000 lines of codes (22.7% of the code-
base) are devoted to control the quality of BtrPlace side constraints.

Despite this state-of-the-art quality management for production
systems, users still report critical defects due to invalid scheduling
decisions. We derived 3 categories of domain-specific defects after
an analysis of the public issue tracker of OpenStack Nova, Apache
CloudStack, BtrPlace, and the private issue tracker of Nutanix re-
lated to its BtrPlace extensions.

A crash prevents starting VMs or reconfiguring placements.
If the crashing conditions are deterministic and unrelated to a
synchronisation of events, no scheduling is possible. Such defects
were reported in BtrPlace [27], and CloudStack [2].

http://www.openstack.org
http://cloudstack.apache.org
http://www.btrplace.org
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An over-filtering is a consequence of an algorithm that removes
suitable solutions from the search space. Consequently, the sched-
uler ignores some viable solutions. Such defects were reported in
OpenStack Nova [12, 14, 15], in CloudStack [23, 24], and in Btr-
Place [9, 19].

An under-filtering is a consequence of an algorithm that does
not remove unsuitable decisions from the search space. As a result,
the retained scheduler decisions contradict at least one of the spec-
ified requirements. For example in OpenStack Nova, [5, 26] report
concurrency issues that lead to server saturation, and thus low
VM performance. In CloudStack, [25] allows the allocation of more
than 100% of a storage unit to a VM. In BtrPlace, [8] shows that
the implementation of the VM-VM anti-affinity is not consistent in
some cases. In the AOS, their alternative implementation of VM-VM
anti-affinity co-located some VMs under certain circumstances.

This study reveals that serious VM scheduler defects occur in
situations that were not anticipated by the developers [7]. Crashes
and under-filtering decrease the user confidence in the system.
Over-filtering reduces the infrastructure hosting capacity and the
return on investment for the IaaS provider. Such defects are also
explained by a lack of expertise of the developers. Indeed, devel-
oping constraints requires a specific knowledge about the domain,
its theoretical foundations (combinatorial optimisation), its logic
(the VM and server lifecycle), and its pitfalls (over or under filtering
decisions). Tracking defects requires a deep understanding of the
possible states of a large infrastructure and the constraints it might
face to infer an inconsistency.

3 DEBUGGING A VM SCHEDULER
This section discusses our approach to debug a VM scheduler. We
first present a DSL dedicated to the specification of scheduling
constraints, and then we illustrate its usage on the specification of
some constraints of BtrPlace.

3.1 A DSL for specifying constraints
Numerous bugs are caused by a mismatch between the solutions
that should be acceptable and the solutions that the scheduler algo-
rithm considers. Developers should then be able to express formally
what a valid solution is. Consequently, our DSL targets the speci-
fication of the set of states accepted by a given constraint and a
natural approach is to rely on propositional logic. The system state
can be defined as the set of elements that compose the system and
the state of each element. Thus, specifications rely on set theory to
reason on the state of the set of elements (VMs, nodes, etc.) and on
dedicated functions to access the state of the elements. The set of
dedicated functions is extensible. At the language level, a dedicated
function is only characterised by a description and a signature. Its
implementation must only be provided at runtime, using native
code. This design makes the DSL adaptable to different business
logics, and generic because a different set of elements and helper
functions can be defined for each scheduler. Finally, the existence
of temporal aspects inside constraints, especially in continuous
constraints, leads to the introduction of a simple temporal operator
to reason over the historical state of the elements.

Language design. The specification language is used both to
express the core and the side constraints. It is based on first order

logic augmented with a few simple set and list operators. Sets and
lists can be defined both by extension and by comprehension but
in practice only finite sets (and lists) can be defined; they may only
be defined by either restriction of existing sets or by application of
predefined functions. The language not only specifies acceptable
configurations but also acceptable reconfigurations, where a recon-
figuration is a set of operations allowing to go from a configuration
to another, e.g., migration, shutdown of a node, boot of a new VM.
The generic syntax of the language is defined in Listing 1.

1 term : : =
x / / v a r i a b l e

| term op term / / o p e r a t i o n
| i d ( term , . . , term ) / / f u n c t i o n c a l l
| ^ i d ( term , . . , term ) / / t empo r a l c a l l

6 | c o n s t a n t

/ / s e t i n c ompr eh en s i on o r e x t e n s i o n
| { term . x typede f_op t e rm , prop , . . , prop }
| { term , . . , term }

11

/ / l i s t i n c ompr eh en s i on o r e x t e n s i o n
| [ term . x typede f_op t e rm , prop , . . , prop ]
| [ term , . . , term ]

16 t ypede f_op : : = : | << : | < : | / : | / << : | / < :

op : : =
+ | − | ∗ | / | / \ | \ /

| < | <= | > | >= | = | /=
21 | & | | | −−> | <−>

| : | << : | < : | / : | / << : | / < :

prop : : =
term / / b o o l e a n term

26 | ! x t ypede f_op term . prop
| ? x typede f_op term . prop

Listing 1: Syntax of the constraint specification language.

Variables are either bound by the language constructs (by quan-
tifiers and set definition), or predefined in the testing framework
(e.g. vms is the set of all VMs). Identifiers id range over names
of predefined functions and of other constraint specifications. op
are basic operators on sets (intersection /\, membership :, inclu-
sion <:, etc.), integers (comparison =,<, and arithmetic +,-, etc.),
and boolean formulas (and &, or |, implication -->, etc.). The nega-
tion of those operators also exist, e.g. /: stands for <. typedef_op
ranges over the operators allowed for variable definition, i.e. (finite)
set membership, inclusion and packings. Packing being a special
operator <<: such that S<<:T is true if S is a partition of a subset of
T. Terms are additionally constrained by a type system that limits
the expressiveness of the specification language so that it is simple,
tractable, and intuitive. Calls can either be invocation of predefined
functions or of constraint specifications. Predefined functions are
simple functions defined in the testing framework. They consist of
helper functions (e.g., card) and functions providing access to the
system state (e.g., host, vmstate).

The temporal call construct is the most domain specific concept:
it evaluates a function or constraint call, but giving to the variables
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1 toRunning : : =
! ( v : vms ) vmState ( v ) = running −−> ^vmState ( v ) : { ready , running , s l e e p i n g }

3 toReady : : =
! ( v : vms ) vmState ( v ) = ready −−> ^vmState ( v ) : { ready , running }

t o S l e e p i n g : : =
! ( v : vms ) vmState ( v ) = s l e e p i n g −−> ^vmState ( v ) : { running , s l e e p i n g }

noVMsOnOffl ineNodes : : =
8 ! ( n : nodes ) nodeState ( n ) /= on l i n e −−> card ( hosted ( n ) ) = 0

Listing 2: Specification of BtrPlace core constraints toRunning, toSleeping, and toReady restrict the possible state transition
for the VMs. noVMsOnOfflineNodes forbids a node that is not online to host any VMs.

the values they had at the beginning of the currently executed recon-
figuration. Temporal call enables reasoning on the historical state
of the system without directly reasoning on time.

Comprehension sets are kept simple and easily computable:
x typedef_op term defines a new variable ranging over a finite
set defined by typdef_op term; this set is additionally filtered by
checking for which value of x the propositions on the right are
verified. Then the term is evaluated. The term can only use bound
variables, i.e. x and the variables of the testing framework. Only
finite sets can be generated this way; this is due to the constrained
construction of comprehension set (variable bindings and typing)
but also to the fact that the predefined functions cannot generate
infinite sets when their input range over a finite set. The other
constructs have a straightforward semantics.

Propositions are either terms (including first order logics) or
quantified expression where the quantified variable is typed and
restricted to a finite set, in a similar way as the comprehension set
construct. A constraint specification associates a formula to an id.
The behaviour of the core of the VM scheduler will thus be specified
as a set of constraint specification, and each side constraint will
be associated with a single constraint specification; our testing
environment will check the conformance of a constraint with its
specification.

A simple type-checker is implemented; it checks the type con-
sistency of the parsed expression, e.g. that <: compares two sets of
the same nature, and raises an error if a specification proposition
cannot be typed.

Sample specifications. We illustrate below the semantics of
our DSL based on the specification of some of the constraints of
BtrPlace, OpenStack Nova, CloudStack, VMWare DRS and AOS.
Listing 2 presents the complete specification of the core part of
BtrPlace. This specification defines the lifecycle of VMs and nodes;
it describes the state of the system and its possible evolutions. The
first three specifications express the life cycle of the VM’s state.
For example, the first definition should be read “for every VM, if
the current state is running then at the beginning of the considered
transition this VM should be ready, running, or sleeping”. Remark that
the specification uses several predefined functions. Furthermore, the
^ operator to reason on the transition of the system state (^vmState
is a function that returns the historical state of the system). The
last definition relates the node state and the VM state stating that
“for all nodes, if the node is not online then the number of VM hosted
on this node should be 0”. Matching the VM lifecycle of CloudStack
would require removing the sleeping state while matching the

OpenStack Nova lifecycle would require to add a paused state
reachable from the running state.

RunningCapac i ty ( ns <: nodes , nb : i n t ) : : =
sum ( { card ( running ( n ) ) . n : ns } ) <= nb

MaxOnline ( ns <: nodes , nb : i n t ) : : =
card ( { i . i : ns , nodeState ( i )= on l i n e } ) <= nb

Root ( v : vms ) : : =
vmState ( v ) = running −−> host ( v ) = ^host ( v )

Lone ly ( vs <: vms ) : : =
! ( i : vs ) vmState ( i ) = running −−>

( hosted ( host ( i ) ) ) − { i } ) < : vs

Fence ( v : vms , ns <: nodes ) : : =
vmState ( v ) = running −−> host ( v ) : ns

S p l i t ( p a r t < <: vms ) : : =
{ { host ( v ) . v : p , vmState ( v )= running } . p : p a r t }

< <: nodes

Among ( vs <: vms , p a r t s < <: nodes ) : : =
? ( g : p a r t s )

{ host ( i ) . i : vs , vmState ( i ) = running } <: g

Spl i tAmong ( vs <<: vms , p a r t < <: nodes } : : =
( ! ( v : vs ) Among ( v , p a r t ) ) & S p l i t ( vs )

Mos t lySpread ( vs <: vms , nb : i n t ) : : =
card ( { host ( v ) . v : vms , vmState ( v ) = running } )

>= nb

Sha r e ab l eRe sou r c e ( i d : s t r i n g ) : : =
! ( n : nodes )
sum ( [ cons ( v , i d ) . v : host ( n ) ] ) <= capa ( n , i d )

Listing 3: Sample specification of side constraints available
in BtrPlace, VMWare DRS, OpenStack Nova, or AOS.

Listing 3 shows the specification of significant side constraints.
RunningCapacity (NumFilter in OpenStack Nova) ensures that in
total at most nb VMs are running on the online nodes among the set
ns. It illustrates a basic set comprehension construct. MaxOnline
ensures that at most nb nodes are online among ns. The specifica-
tion illustrates the set comprehension construct that defines the
subset of the nodes ns that are online. Root enforces a running VM
that cannot be migrated, i.e. its next host always equals its current
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host. Lonely (dedicated instances in EC2) states the host running
the VMs in vs only host VMs in vs. When Lonely is coupled with
the Fence constraint (VM-Host affinity in VMWare DRS), it equals
IsolatedHostsFilter in OpenStack Nova. Split ensures that no
two VMs belonging to two different sets are placed on the same
node. This specification illustrates the packing construct. The con-
straint is specified in a positive manner that considers, for each
set of VMs p, the set of nodes hosting running VMs of p; taking
the different sets defined for each p in part should form a pack-
ing, thus ensuring that for two different ps their hosting nodes
are disjoint. Among ensures a set of running VMs must be hosted
on a single group of nodes among those available. This is spec-
ified by stating there exists one set g in the packing parts that
is hosting every running VM in vs. With OpenStack Nova, such
a constraint would be used for example to state a group of VMs
must be running on a single availability zone. SplitAmong ensures
distinct sets of running VMs must be hosted on a distinct set of
nodes. With OpenStack Nova, such a constraint would be used
for example to state every set of VMs are running on a distinct
availability zone; providing high-availability if the VMs run a repli-
cated service. Here, this constraint is specified using a composition
of Split and Among inside different scopes. MostlySpread is the
relaxation of the VM-VM anti-affinity constraint used in AOS. It en-
sures the given running VMs are hosted on at least a given number
of distinct nodes. It supplants the common anti-affinity constraints
available in OpenStack Nova, CloudStack, BtrPlace and VMWare
DRS. ShareableResource is the constraint that prevent overbook-
ing of a given resource on every node. capa and cons are business
specific functions that return the resource capacity for a given node
and the resource consumption for a given VM.

The examples in Listing 3 illustrate the adequacy of a proposi-
tional logic to specify SLA aspects of side-constraints. Furthermore,
Listing 2 shows that the state transitions typical of core constraints
can also be specified conveniently in our framework.

3.2 BtrPlace Specification
BtrPlace is written in Java. All the core constraints are embedded
inside a single class that represents a prime filtering algorithm
while each side constraint has a dedicated class. The formal specifi-
cations of BtrPlace constraints is done using annotations. Listing 4
illustrates the integration of the core constraint specification. List-
ing 5 illustrates the integration of a side constraint specifying the
Fence constraint. For side constraints, the name of the constraint
specification equals the class name while its arguments match the
class constructor.

@CoreConstra int ( name = " noVMsOnOffl ineNodes " ,
inv = " . . . " )

@CoreConstra int ( name = " toRunning " , inv = " . . . " )
@CoreConstra int ( name = " toReady " , inv = " . . . " )
@CoreConstra int ( name = " t o S l e e p i n g " , inv = " . . . " )
public in te r face S chedu l e r { / ∗ . . . ∗ / }

Listing 4: Integration of the core constraints specification
inside BtrPlace.

The use of annotations has two benefits. First, it integrates the
specification as a part of the constraint documentation. It can be

used as a substitute for the usual informal and ambiguous verbal
specification or can complement it. Second, it is not intrusive as
writing the specification does not modify any production code
which is of a prime importance for developers.

@SideCons t r a in t ( a r g s = { " v : vms " , " ns <: nodes " } ,
inv = " vmState ( v ) = running −−> hos t ( v ) : ns " )

public c l a s s Fence extends S imp l eCon s t r a i n t {

public Fence (VM v , Co l l e c t i o n <Node> ns ) { / ∗ . . . ∗ / }
/ ∗ . . . ∗ /

}

Listing 5: Integration of the side constraint stating an anti-
affinity between VMs and servers.

4 A DEBUGGING FRAMEWORK
The specification language allows to formalise the filtering process
of a VM scheduler. In this section, we discuss how this specification
is used to debug the implementation of a VM scheduler and BtrPlace
in particular. We first detail the debugging methodology. We then
discuss how test campaigns automatically generate test cases to
reduce the developer effort.

4.1 Debugging Methodology
The exhaustive verification of a constraint implementation requires
to explore the state-space of possible configurations and reconfigu-
rations for the system. The state-space is however an unbounded
space thus exploring it exhaustively is not possible. Accordingly,
SafePlace uses a custom fuzzer [20] to pick randomly inside the
state-space numerous test cases, each composed of an initial con-
figuration, a reconfiguration plan, and constraint parameters. The
reconfiguration plan consists of a set of actions, each with a deter-
mined starting and finishing time. It then checks for every picked
test case whether the implementation behaves accordingly to the
specification. The fuzzer only relies on a logical time to produce
test cases where different interleaving of actions are investigated.
In this context, the action duration is not meant for being realistic.

The constraint specification is the oracle that states the expected
behaviour of the tested constraint. A specification evaluator is used
to state whether a given system state is acceptable according to the
specification or not. The state validation is performed on a repre-
sentation of the infrastructure provided by a simulator that mimics
the infrastructure manipulated by the VM scheduler and simulates
the tested reconfiguration plan. The temporal calls are resolved by
evaluating the functions of the initial configuration instead of the
configuration currently reached. The test-case is analysed to check
whether all the successive states reached during the reconfiguration
plan are valid or not, according to the specification of the constraint
under test. Each time an action starts or ends, the simulator updates
the infrastructure state accordingly and tests the acceptability of the
updated state. According to the semantics of BtrPlace, and of other
existing VM schedulers, if several events occur at the same instant,
then the termination of the actions finishing at this instant occur
before the starting of new actions. The simulator applies the same
scheduling and first checks the acceptability of the state reached
after the finished actions, and then performs the starting actions
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before checking again the state validity. Finally, the oracle validates
the test case if and only if each state reached by the simulator is
acceptable according to the specification evaluator.

To qualify the constraint implementation, SafePlace compares
the output of the oracle against the VM scheduler output. It runs
the VM scheduler in a constrained setting consisting of all the
core constraints, plus optionally the side constraint to be tested.
The VM scheduler is also constrained to only explore the recon-
figuration planned in the test case. If it computes a solution, it is
equivalent to the test case reconfiguration plan, this means that
the test case is accepted by the constraint implementation. If the
scheduler states there is no solution, then it means that the test case
violates the constraint implementation. If both the oracle and the
scheduler validate or invalidate the test case, then the implementa-
tion is consistent with the specification. If the scheduler validates
the reconfiguration plan but the oracle does not, this means the
constraint implementation under-filters. Finally, if the scheduler re-
jects the reconfiguration plan but the oracle validates it, this means
the constraint implementation over-filters.

Testing conditions should be chosen precisely so that the di-
agnostic in case of inconsistency is unambiguous. Accordingly,
SafePlace currently checks a single constraint at a time. As it ex-
plores all the possible reconfigurations, testing one constraint at
a time is in general sufficient to ensure the correctness of the VM
scheduler. Indeed, if a combination of several constraints causes a
defect, it means that at least one constraint behaves differently from
its specification and thus the testing of this constraint alone should
identify the bug. Aside, testing the composition of constraints raises
the problem of identifying the faulty one. Thus, when debugging a
side filter, SafePlace constrains the test case so that it validates the
core filter. When debugging a core filter, it constrains the test case
so that it validates the other core filters.

Discussion. It is possible to misuse the DSL and have false posi-
tives or false negatives like with any specification based verification
system. We think however that the use of a domain specific vocab-
ulary limits this situation and such an approach has already been
used in production in other contexts, e.g. at Amazon [22]. Further-
more, detecting mis-specifications is possible using peer review, for
example, by asking developers if a given specification complies or
not with a randomly generated test case, collect the answers and
conciliate when they derive.

The approach is not exhaustive but the random picking already
proved its effectiveness [28]. It also does not disrupt the developers’
workflow thus ease the adoption of the methodology. The verifica-
tion phase can be made online, directly on the developer’s computer
the same way he or she performs unit testing.

Finally, there is one last obvious restriction: the testing is driven
by the modelling of the system and the bugs that happen indepen-
dently of this model might not be found, e.g., SafePlace may not
detect that the VM scheduler might handle poorly machine failures
if they are not considered in the model.

4.2 Debugging BtrPlace through test campaigns
Developers are not willing to change their development workflow.
To ease the adoption of the testing methodology, the developer
orchestrates test campaigns from the development environment

or from the continuous integration system. Each test campaign
generates test cases according to its fuzzer parametrisation and
qualify constraint implementations accordingly.

A test campaign evaluates the implementation of a constraint in
various conditions. For example, Listing 6 illustrates a minimal test
campaign that focuses on the lonely constraint. As the constraint
specification is attached to its Java implementation through annota-
tions, the Java reflection API is sufficient to automatically generate
the BtrPlace constraint from the test case. By default, the fuzzer
generates reconfiguration plans having 3 nodes and 3 VMs, with an
equal distribution between their initial and their destination state,
a duration for each action varying between 1 and 10 seconds. The
constraint arguments are generated randomly by picking values
among the variables domain. Finally, the campaign runs up to 100
test cases and stops at the first failure. Despite a test over 3 nodes
can be considered as small, Yuan et. al pointed out it is enough to
reproduce the critical failures they observed in distributed data-
intensive systems [29].

@CstrTest
public void t e s t L o n e l y ( TestCampaign c ) {

c . f u z z ( ) . c o n s t r a i n t ( " l o n e l y " ) ;
}

Listing 6: A minimal test campaign.

The state space to explore to verify the constraint is unbounded.
Even if we bound it, a long testing phase would alter the developer
productivity. The developer can then customise the fuzzer using
an internal DSL to make the test campaign focuses on a particular
evaluation context. Because the specification language is exten-
sible through business specific functions, the developer can also
customise the fuzzer through decorators to make it add actions or
events over the generated reconfiguration plan and instance.

1 @CstrTest
public void t e s t R e s o u r c eC a p a c i t y ( TestCampaign c ) {

c . f u z z ( ) . vms ( 1 0 ) . srcVMs ( 0 . 1 , 0 . 9 , 0 ) ;

6 c . f u z z ( ) . with (
new Sha r e a b l eR e s ou r c e Fu z z e r ( " cpu " , 7 , 1 0 , 1 , 5 )

. v a r i a b i l i t y ( 0 . 5 ) ) ;

c . f u z z ( ) . c o n s t r a i n t ( " r e s ou r c eCap a c i t y " )
11 . wi th ( " i d " , " cpu " )

. with ( " q ty " , 1 , 5 0 ) ;

c . f u z z ( ) . s ave ( " r c _ t e s t . j s on " ) ;
}

Listing 7: Sample customisation of the fuzzer.

Listing 7 depicts such a customised test campaign. Line 4 tells to
generate reconfiguration plans having 4 VMs with a probability of
being initially in the ready, running, and sleeping state equals
to 0.1, 0.9 and 0 respectively. The number of nodes and the state
transitions will be unchanged. Lines 6-10 state to decorate the re-
configuration plans with a ShareableResourceFuzzer. By default,
the fuzzed reconfiguration is only composed of actions related to
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the state management and the VM placement. Such decorators al-
low to augment the generated plan to make it suitable to test some
business specific constraints. ShareableResourceFuzzer gener-
ates random resource capacity and consumption for the nodes and
the VMs. Here, it generates a cpu resource with a capacity varying
between 7 and 10 for each node, a consumption varying between 1
and 5 for each VM. The plugin sets to 0.5 the probability to have for
each VM a resource demand different from its current consumption.
Lines 10-12 tells to test the constraint resourceCapacity with the
string argument id set to "cpu", to pick values between 5 and 10
for the integer argument qty. Finally, line 14 saves the generated
test cases inside the file rc_test.json. This permits to replay a
test campaign by re-using the test cases generated previously.

The developer also customises the test campaign to configure the
scheduler, to declare the testing limits or to organise the tests. List-
ing 8 presents a test campaign customised for the sake of debugging
the fence constraint. Line 1 states that the campaign belongs to the
affinity group of test campaigns. Line 5 customises the scheduler.
The developer enables the repairmode of BtrPlace to make it focus
only on the VMs that are supposed to be misplaced [13]. Lines 6-7
illustrate a stopping condition stating that the test campaign must
run up to 1000 tests, and stop at the first failure or after 10 seconds.

1 @CstrTest ( groups = { " a f f i n i t y " } )
public void t e s t F e n c e ( TestCampaign c ) {

c . f u z z ( ) . c o n s t r a i n t ( " f en c e " ) ;

5 c . s chedu l e rPa rams ( ) . doRepa i r ( true ) ;
c . l i m i t s ( ) . t e s t s ( 1 0 0 0 ) . f a i l u r e s ( 1 )

. s e conds ( 1 0 ) ;
}

Listing 8: Sample test campaign customisation.

5 EVALUATION
This Section evaluates the benefits of SafePlace. We first evaluate
inside BtrPlace its impact for the developers through a qualitative
analysis of the specification language and the testing environment.
We then experiment its ability to exhibit defects. All the experi-
ments were executed on a Macbook Pro having one Intel I5 CPU
at 2.9 GHz and 16GB RAM running OS X 10.12.3. Tests rely on the
version 1.6.0 of BtrPlace. Experiments were launched directly from
a development environment to reproduce the usage scenario of a
developer testing his code.

5.1 SafePlace integration
SafePlace is integrated inside BtrPlace through the specification
language and the testing environment. This first experiment evalu-
ates the integration by measuring the amount of code to write by a
developer to specify and test a constraint.

BtrPlace specification. This evaluation estimates the effort for
a developer to specify BtrPlace constraints using invariants. As the
functions of the specification language are written in native Java
code, the developer might also have to write new functions.

We specified 27 constraints of BtrPlace to validate the usability
of the specification language. They formalise the states transition,
the action scheduling, the resource sharing, the affinities between

single element or groups of elements and the counting restrictions.
We also specify mostlySpread, the side constraint inside the Nu-
tanix Operating System presented in Listing 3. BtrPlace constraints
are designed for being portable, they have an equivalent or they
supersede all the affinity rules inside VMWare DRS and the filter
scheduler of OpenStack Nova5. Consequently, the specification lan-
guage provides the needed abstractions to also cover the constraints
available in these two VM schedulers.

Figure 1 depicts as a Cumulative Distribution Function (CDF),
the size of the BtrPlace invariants. Figure 2 depicts as a CDF the
size of the 16 developed functions. In both cases, the measurement
is made on a properly formatted code without using minification
techniques.
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Figure 1: CDF of the invariants length.
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Figure 2: CDF of the functions length.

We observe that both the invariants and the functions are short.
The median size of an invariant is 47 characters long and 95%
of them are less than 89 characters long. The median size of a
function is 7.5 sloc. long. The biggest being 15 sloc. long. It is crucial
to have short and simple functions to be sure that they cannot
create undesired behaviour like creating infinite sets or triggering
an infinite loop. This conciseness confirms that a specification
language based on first order logic, and domain specific functions
is appropriate to specify the constraints while providing certain
guarantees such as strong typing or the impossibility to define
infinite sets.

Test campaigns. A first experiment evaluates the expressivity
of the test campaigns against the 63 unit tests of BtrPlace that are
devoted to the side constraints. The 166 other unit tests are ignored
as there are either not focusing on a single constraint or focusing
5OpenStack Nova exhibits the largest number of filters but most of them can be
rewritten as a VM-Host affinity constraint
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other aspects of the scheduler. Figure 3 depicts the test length of
SafePlace and BtrPlace as a CDF. We observe the code to write
for the test campaigns are much smaller than for the unit tests
of BtrPlace. The tests are 3.83 times shorter on average, with a
median length of 6 sloc. for SafePlace against 23 sloc. for BtrPlace.
This conciseness is desirable for a developer as it contributes to
increase in the proportion of time spent on writing production code.
This expressivity is explained by the features provided by the test
campaigns. First, the fuzzer relieves the developer from writing
specific test scenarios that can naturally introduce a bias. Second,
the expression evaluator relieves the developer from evaluating the
adequacy of the result. Thus, within a test campaign, the developer
only specifies if needed, the campaign parameters to make it focus
on a particular context.
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Figure 3: Test length.

The second experiment evaluates the testing speed of SafePlace.
For this experiment, each test campaign runs 100 test cases, the
number of VMs and nodes vary from 1 to 30, and the possible
initial states or reconfigurations. Figure 4 shows the average test
duration and its distribution. In Figure 4a, any initial state and
reconfiguration are allowed for the VMs and the nodes. It is then
possible to generate test cases that contradict the core constraints.
In Figure 4b, the fuzzer is tuned to prevent any violation of the core
constraints.
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(a) Fuzzing over the complete VM and
node life-cycle.
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Figure 4: Testing duration and its distribution. The fuzzing
stage generates a test case. The validation stage validates the
test case against the core constraints and re-generate test
cases upon violation. The testing stage evaluates a valid test
case.

We first observe that the validation stage dominates the testing
phase. This is explained by the 4 restrictive core constraints to
check during the validation stage while 1 constraint is evaluated
during the testing stage. We also observe that the duration increases
with the instance size. The core constraints require to test every
VM and node. As a result, the duration increases at least linearly
with the number of elements. Finally, we observe that the duration
varies depending on the allowed states and transitions Indeed, when
fuzzing over all the possible states and transitions, the risk of having
at least one core constraint violation increases exponentially with
the instance size (see Figure 4a). As discussed in Section 4, the
validation stage is required to ensure no constraint other than the
tested one can fail. In the case the developers are confident with
the core constraint implementations, it might then be acceptable
to modify the fuzzer so that it generates instances that necessarily
validate these constraints. Accordingly, the validation stage could
be removed from the testing workflow.

The unit tests of BtrPlace usually focus on instances made up
with up to 5 VMs and nodes which is considered sufficient to ex-
hibit most of the failures that are reported inside representative
distributed systems [29]. This leads to test cases that run quickly
and exhibit faults that are easy to fix due to the limited number of
artefacts. With a test campaign that generates instances having 10
VMs and 10 nodes, it is already possible to test the implementation
against numerous combinations of element states and transitions,
subsets and packings. At this scale, SafePlace runs 200 tests per
second. This allows developers to keep testing the production code
interactively within their IDE. Test campaigns that are generating
big instances or tens of thousand of instances might slow down
the developer productivity if they are launch within their IDE. In
that case, the test campaigns should be executed as a part of the
continuous integration environment.

5.2 SafePlace benefits
This experiment evaluates the capacity of SafePlace at finding de-
fects inside BtrPlace. A test campaign is executed for each of the
22 side constraints and runs 1,000 test cases. At total, 22,000 test
cases are then generated, executed and analysed. All the reported
defects were confirmed by BtrPlace developers.

Table 5a summarises the defects, classified by the consequences
for the end user, the number of involved constraints and the number
of failing test cases. SafePlace finds defects in 12 of the 22 evaluated
constraints, all being side constraints. Under certain circumstances
10 of the constraints under-filter, leading to decisions that vio-
late the SLOs; 3 constraints crash the scheduler; and 6 constraints
over-filter and reduce the infrastructure hosting capacity. We also
observe that the under-filtering is the most common consequence
(57.02% of the defects).

Table 5b summarises the defects by their underlying cause. This
taxonomy is derived from a manual analysis of the defects to infer
a generic cause. Our analysis, under the supervision of BtrPlace
developers, confirms that our approach does not exhibit false posi-
tives. Consequently, it also confirms the defects are not caused by a
mis-specification or an error in the simulator. The cause named A
is the biggest source of defects. It refers to the use of a continuous
constraint in a context where the constraint is initially violated. In
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Consequence Constraints Failing tests
Under-filtering 10 938
Crashes 3 459
Over-filtering 6 244

(a) Defect consequences.

Code Defect cause Constraints Tests
A initial violation in continuous restriction mode 7 704
B unexpected arguments 4 642
C discrete filtering in continuous restriction mode 3 45
D unsupported action synchronisation 4 20
E bad action semantic comprehension 1 16
F unconsidered initial element state 1 4

(b) Defect causes.

Figure 5: Cause and consequences of the defects and their distribution.

past releases of BtrPlace, some constraints automatically switched
to the discrete mode in that situation. To prevent inconsistencies,
the implementation must now report the violation. This signals that
the developers forgot to fix the old behaviour in some corner cases.
The cause B refers to implementations that are not robust enough
to support valid but unusual arguments. Those are usually empty
collections or packings with some empty subsets. This reveals that
the developers are over-confident with the parameter content. The
cause C refers to an aggressive optimisation of the code. The de-
veloper uses an optimisation that is fair in the discrete mode but
inadequate in the continuous mode. This reveals that the devel-
opers neglect the temporal dimension of the scheduling problem
and only consider the spatial dimension. The cause D refers to an
unanticipated interleaving of actions such as an ignored precedence
relationship between two actions. This reveals that the developers
cannot always consider all the possible action interleaving. The
cause E reveals a misunderstanding of the action semantic. Here,
the developers ignore that despite a migrating VM is hosted simul-
taneously on its source and its destination, it is still running solely
its source host. This reveals that developers lack knowledge about
the action model. Finally, the cause F highlights the situation where
the developers omit the complete life-cycle of the elements.

There is currently 3 open issues in BtrPlace that are related to
filtering problems. 12 corresponds to cause E, 44 to cause C and
121 to cause A. All were reproduced and reported automatically by
SafePlace.

This experiment validates the capacity of SafePlace to exhibit
existing and new defects. More importantly, the analysis of their
root causes confirms practically that i) the defects are specific to
the domain of VM scheduling and ii) SafePlace eases their detection
and their reporting.

Evaluating the expression evaluator. Since 2011, BtrPlace
contains an assertion system to verify the validity of each computed
reconfiguration plan. The developer of each constraint is expected
to write a checker used inside a simulator. The checker API is event
based and the developer can write code inside up to 24 methods.
This task is error prone, not attractive enough for the developer
and we observed that the last implemented constraints do not
include a checker. SafePlace could effectively replace this checker
as both tools automatically check the consistency of a solution. In
this experiment, we then compare the detection capabilities of the
checker and of SafePlace by running test campaigns using either
the constraint specification or the checker as an oracle.

Figure 6 shows that the SafePlace methodology finds much more
defects than the BtrPlace checkers: while the checkers reported
249 defects, the expression evaluator reported 556. In this experi-
ment, we used the assertion-based checker of BtrPlace to check the
configurations that were produced by the SafePlace fuzzer. This
experiment shows two informations. First, the difference between
the two checkers highlights that the traditional assertion-based
checker of BtrPlace is unable to identify over-filtering defects. Sec-
ond, the SafePlace fuzzer was also able to exhibit 249 scenarios that
were not anticipated by the developer despite being meaningful.
More qualitatively, we observed that a checker never reported a
defect that was not also exhibited by SafePlace.

0

100

200

300

crashes over−filtering under−filtering
defect

de
fe

ct
s

oracle
checker
specification

Figure 6: Defects exhibited using SafePlace or BtrPlace
checkers.

All these experiments validate the benefits of using a specifica-
tion language coupled with testing techniques to detect defects.
SafePlace enabled to exhibit reasoning issues that are specific to
the domain of VM scheduling. These defects cannot be captured
through traditional code analysis tools such as those relying on
static analysis, concolic testing or symbolic execution. The use of a
specification language plays also a role of formal documentation
while being faster to write than a checker.

5.3 Verifying BtrPlace advanced features
This last set of experiments revise some of the features of BtrPlace
that modify the way constraints are applied. For these experiments,
each test campaign generates and solves 500 instances having 10
VMs and 10 nodes each. By default, the fuzzer generates random
test cases. To perform an accurate comparison, the test cases have
been generated and stored to be reused in every context.

Continuous constraints in practice. BtrPlace supports dis-
crete and continuous constraints [7]. A discrete constraint must be
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satisfied at the end of a reconfiguration while a continuous con-
straint must be satisfied at any moment of the reconfiguration. This
experiment compares the implementation quality of these restric-
tions. It runs the test campaign of the 9 constraints that support
both a continuous and a discrete mode. Figure 7 shows the results
and reveals that the continuous implementation of the constraints
is less robust than their discrete implementation. 236 of the test
cases exhibit an inconsistency in the discrete mode against 987 in
the continuous mode. In details, while the continuous implemen-
tation over-filters slightly more than the discrete implementation
(103 additional test cases), 854 of the test cases exhibited an under-
filtering. The purpose of the continuous constraints is to enforce the
SLO satisfaction at every instant. In this context, having a trustable
scheduling algorithm is even more important than in the discrete
case because the SLOs that must be ensured in a continuous way
are the most critical ones. This experiment also confirms that it is
more difficult for the developers to master the scheduling problems
than the placement problems as implementing a correct continuous
constraint is error prone.
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Figure 7: Defects depending on the restriction mode.

Problem simplification in practice. The repair mode of Btr-
Place forces the filtering algorithm to focus only on the set of VMs
that are possibly mis-placed, the other being untouched [13]. To
compute this set, each constraint uses a heuristic to estimate, with
regards to its filtering, the VMs it suspects. If the heuristic over-
estimates this set, the solving duration of the problem increases.
More importantly, if the heuristic under-estimates the set of VMs,
then the scheduler might no longer be able to find a solution; this
is a particular case of over-filtering.

This experiment measures the under-estimation risks of the
repair mode. We run two test campaigns with and without the
repair mode enabled and analysed the defects. SafePlace reports
the same defects in both situations (578 over 10,000) (see Figure 8).
Each time, the defects are present with or without the repair mode.
The heuristics used inside each constraint do not lead to an over-
filtering. Thus, this legitimates their use to increase the scheduler
performance.

6 RELATEDWORKS
To the best of our knowledge, SafePlace is the first approach to
address correctness of VM schedulers. However, SafePlace combines
formal verification and testing techniques to identify faults in cloud
computing. Accordingly, this section discusses these three research
domains that inspired this work.

Faults in cloud computing. Cloud systems are supposed to be
always available. The research community is thus interested in the
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Figure 8: Defects depending on the repair mode status.

characterisation and correction of faults in cloud systems. Gunawi
et al. analysed bugs in Hadoop Map-Reduce, ZooKeeper, HBase,
HDFS, Cassandra and Flume [10] and then in cloud service outage
[11]. They report that logic specific bugs are the most frequent,
partially caused by a gap between the system specifications and
the resulting code.

None of these works analyse VM schedulers. The focus on this
critical component led us to a domain specific defect taxonomy,
a specification language bringing implementation and specifica-
tion together, and a testing environment to report domain specific
reasoning issues.

Formal verification in Cloud Computing. Massively used
for critical systems, formal methods start to be used by the cloud
community. Naturally, a first use case being to validate critical com-
ponents such as the hypervisor. For example, Leinenbach et al. [16]
verified a subset of the Microsoft Hyper-V hypervisor instructions
while Amit et al. [1] used the Intel Hardware validation tool, to
perform a test-based validation of the virtual VCPU behaviour in-
side the KVM hypervisor. Amazon used TLA specifications coupled
with the TLC model checker to exhibit new bugs inside Amazon S3
and DynamoDB [22]. These approaches provide the highest level of
trust. They however require extensive skills in formal methods that
prevent their massive adoption by the developers. This was wit-
nessed by the Facebook engineers that were not used to the TLA+
concepts, and designed a C-like alternative, closer to their usual
programming language. In our case, the temporal notion required
in VM schedulers is less important than in those approach, this is
why our DSL first rely on propositional logic where constraints can
be specified clearly and briefly.

With SafePlace, we also provide to the developer a tractable
approach. The use of a DSL eases the constraint specification while
fuzz testing reports significative defects without requiring modify-
ing the production code nor to change the developer workflow.

Automated testing of cloud systems software. Bouchenak et
al. [3] test PaaS services from a specification based on a finite-state
automaton. This approach is meaningful at the PaaS layer because
the notion of workflow is inherent to such services. Concerning
VM schedulers, a DSL based on propositional logic is more suitable
to represent SLA constraints than a specification based on state
transitions. Unit tests and smoke testing are the standard tools to
detect bugs. They are effective when the developer knows what
matters to test, and when the awaited results can be checked rigor-
ously. However, Section 2 pointed out that tests are biased by the
developer expertise. Yuan et al. also reported that despite rigorous
testing protocols, numerous cloud systems are still failing due to
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interleaving of events that remained untested despite being simple
to reproduce [29]. Verification tools based on static or dynamic
analysis can prevent from a biased testing. For example, Klee [4]
mixes symbolic execution and a SAT solver to generate unit tests
that can ensure 100% code coverage given enough time. Symbolic
execution suffers however from scalability issues when the code-
base is large or contains a complex control flow. An alternative is
fuzz testing [20]. This method generates random input data for a
component to detect crashes. For example, CSmith [28] detects com-
piler crashes on correct C source code. These solutions detect bugs
with a small effort from the developers. However, they are usually
limited to the detection of crashes and cannot exhibit reasoning
issues as they cannot compare the execution output against the
expected behaviour. SafePlace being a testing environment for VM
schedulers, it reports along with crashes, over-filtering and under-
filtering issues thanks to the constraint specification language.

Formal verification of process schedulers. Inside a multi-
core system, a process scheduler elects at regular interval the pro-
cesses to run and assign them to physical cores. Accordingly, the
process scheduler shares a notion of placement with the VM sched-
uler. Because a process scheduler is also a critical component, the
research community proposed solutions to address performance
and dependability concerns. For example, Bossa [21] proposes a
DSL to ease the correct implementation of single-process sched-
ulers. The DSL ensures, among other things, that the transitions for
a process state are valid with regards to the specified automaton
while a core never executes a blocked thread. After a recent study of
defects inside the Completely Fair Scheduler of the GNU/Linux Ker-
nel [18], Lepers et al. [17] start to enhance Bossa with the objective
of generating a proved optimistic multicore scheduler. SafePlace
targets correct (VM) schedulers and also uses a formal language
to ease the verification process. however our approaches differ sig-
nificantly. Lepers et al. use an imperative language being able to
generate a correct scheduler code at a latter stage while SafePlace
currently uses a declarative language to formalise the awaited state
of the system and verify legacy VM schedulers.

7 CONCLUSION
VM schedulers do not always take decisions aligned with the adver-
tised behaviour. These defects have consequences in terms of trusts
and revenues. They are caused by the difficulty to master the theo-
retical and practical aspects of placement problems, and to envision
all the situations that must be considered when implementing the
algorithms that filter out the unsatisfactory decisions.

We proposed SafePlace to exhibit consistency issues in VM sched-
uler code. SafePlace mixes formal specification and fuzz testing to
report inconsistencies between the scheduler specification and its
implementation. The developer writes a specification of the con-
straints using a DSL based on first order logic and domain specific
functions. The associated implementation is then automatically
checked for conformance.

We validated SafePlace on the VM scheduler BtrPlace. The inte-
gration does not require changing the production code, nor the de-
velopment workflow. The specification language is portable enough

to formalise the constraints inside BtrPlace, OpenStack Nova, VM-
Ware DRS and the Acropolis Operating System from Nutanix. Spec-
ification is concise, 50-character long per constraint. The testing
code is 3.83 times smaller than BtrPlace unit tests and can generate
and run 200 tests per second. SafePlace found all the currently open
bugs related to the filtering algorithms. Furthermore, despite the
current 80% code coverage of BtrPlace, SafePlace exhibited new
high-level defects with 5 of the 6 root causes being reasoning issues
specific to the domain of VM scheduling; undetectable by static
analysis. Those defects led to crashes, SLO violations, and resource
wasting. Finally, SafePlace outperformed the legacy assertion based
checkers by revealing 2.23 times more defects.

AVAILABILITY
SafePlace is available as a module of BtrPlace under the terms of the
LGPL v3 licence. It can be downloaded at http://www.btrplace.org.
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